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Abstract

Software Product Line (SPL) engineering is a paradigm shift towards modeling and devel-
oping software system families rather than individual systems. It focuses on the means of
efficiently producing and maintaining multiple similar software products, exploiting what
they have in common and managing what varies among them. This is analogous to what
is practiced in the automotive industry, where the focus is on creating a single production
line, out of which many customized but similar variations of a car model are produced.

Feature models (FMs) are a fundamental formalism for specifying and reasoning about
commonality and variability of SPLs. FMs are becoming increasingly complex, handled
by several stakeholders or organizations, used to describe features at various levels of
abstraction and related in a variety of ways. In different contexts and application domains,
maintaining a single large FM is neither feasible nor desirable. Instead, multiple FMs are
now used.

In this thesis, we develop theoretical foundations and practical support for managing
multiple FMs. We design and develop a set of composition and decomposition operators
(aggregate, merge, slice) for supporting separation of concerns. The operators are formally
defined, implemented with a fully automated algorithm and guarantee properties in terms
of sets of configurations. We show how the composition and decomposition operators can
be combined together or with other reasoning and editing operators to realize complex
tasks. We propose a textual language, FAMILIAR (for FeAture Model scrIpt Language for
manIpulation and Automatic Reasoning), which provides a practical solution for manag-
ing FMs on a large scale. An SPL practitioner can combine the different operators and
manipulate a restricted set of concepts (FMs, features, configurations, etc.) using a concise
notation and language facilities. FAMILIAR hides implementation details (e.g., solvers)
and comes with a development environment. We report various applications of the opera-
tors and usages of FAMILIAR in different domains (medical imaging, video surveillance)
and for different purposes (scientific workflow design, variability modeling from require-
ments to runtime, reverse engineering), showing the applicability of both the operators
and the supporting language. Without the new capabilities brought by the operators and
FAMILIAR, some analysis and reasoning operations would not be made possible in the
different case studies.

To conclude, we discuss different research perspectives in the medium term (regarding
the operators, the language and validation elements) and in the long term (e.g., relation-
ships between FMs and other models).





Résumé

L’ingénierie des lignes de produits logiciels (LdPs) est un paradigme pour la modélisa-
tion et le développement de familles de systèmes logiciels plutôt que de systèmes logiciels
individuels. Son objectif porte sur les moyens de produire et maintenir efficacement des
produits logiciels similaires en exploitant ce qu’ils ont en commun et en gérant ce qui varie
entre eux. Par analogie, la pratique dans l’industrie automobile est de construire une ligne
de production dans laquelle des variations personnalisées mais tout de même similaires
de modèles de voitures sont produits. Les feature models (FMs) sont une représentation
fondamentale pour spécifier et raisonner sur la commonalité et la variabilité des LdPs en
termes de features (caractéristiques). Les FMs deviennent de plus en plus complexes, ma-
nipulés par plusieurs développeurs ou organisations, utilisés pour décrire des features à
divers niveaux d’abstraction et qui sont mises en relation de différentes façons. Maintenir
un seul gros FM n’est ni réaliste ni souhaitable. Au contraire une tendance forte est de
considérer de multiples FMs. Dans cette thèse, nous dévelopons les fondations théoriques
et un support pratique pour gérer de multiples FMs. Nous concevons et dévelopons
un ensemble d’opérateurs de composition et de décomposition (aggregate, merge, slice)
pour supporter la séparation des préoccupations. Les opérateurs sont formellement défi-
nis et implémentés avec un algorithme qui guarantie des propriétés sémantiques. Nous
montrons comment les opérateurs de composition et de décomposition peuvent être com-
binés ensemble ou avec d’autres opérateurs d’édition ou de raisonnement pour réaliser
des tâches complexes. Nous proposons un language textuel, FAMILIAR (pour FeAture
Model scrIpt Language for manIpulation and Automatic Reasoning), qui fournit une so-
lution opérationnelle à la gestion de multiples FMs à large échelle. Un utilisateur des FMs
peut combiner les différents opérateurs et manipuler un ensemble restreint de concepts
(FMs, features, configurations, etc.) en utilisant une notation concise et des facilités lin-
guistiques. FAMILIAR cache les détails d’implémentations (e.g., solveurs) et est supporté
par un environnement de développement complet. Nous décrivons plusieurs applications
de ces opérateurs et utilisations de FAMILIAR dans différents domaines (imagerie médi-
cale, vidéo protection) et pour différents objectifs (conception de workflows scientifiques,
modélisation de la variabilité des exigences à l’exécution, rétro ingénierie), démontrant
l’applicabilité à la fois des opérateurs et du langage de support. Sans les nouvelles capac-
ités fournies par les opérateurs et FAMILIAR, certaines opérations d’analyse et de raison-
nement n’auraient pas été possibles dans les différents cas d’études. Pour conclure, nous
discutons les différentes perspectives de recherche à moyen terme (opérateurs, langage,
éléments de validation) et à long terme (e.g., relations entre les FMs et les autres modèles).
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Introduction

1.1 CONTEXT AND MOTIVATION

There is no doubt that the world is becoming increasingly dependent on software. It is
now an essential element of many organizations (finance, retail, public sectors) and even
our daily lives depend on complex software-intensive systems, from banking and communi-
cations to transportation and medicine.

It is obvious that these software systems should provide the required capability, be of
sufficient quality, be customizable, and be delivered at an acceptable price. Unfortunately,
the reality is not like that. Several studies report that software projects are running over-
time, are unmanageable, are running over-budget, are producing low-quality software
that did not meet the original requirements and that are difficult to maintain [Northrop
et al. 2006]. The whole set of phenomena, usually defined as the software crisis, has been
observed early in history (in the 60s) and is still persistent. The discipline of software en-
gineering has been created to cope with the software crisis and has a long tradition. The
challenge for the research community and the industry has always been to provide the
right languages, abstractions, models, methods, and tools to assist software developers
in building well-structured and customizable software. Paradigms and concepts such as
structured programming, abstract data types, modularization, object orientation, design
patterns or modeling languages were all introduced with the clear objective of simplifying
the task of engineering a software system.

Nevertheless, all these attempts though useful and practically applied are still not suf-
ficient to deal with the enormous and ever-increasing complexity of contemporary soft-
ware systems, as well as the evolving customer expectations. With more and more di-
versity, software products rapidly evolve and increase in size and complexity. Due to the
increasing demand of highly customized products and services, software organizations
have now to produce many complex variants accounting not only for differences in soft-
ware functionalities but also for differences in hardware, operating systems, localization,
user preferences, etc. Obviously, one do not want to develop from scratch and indepen-
dently all of the variants: one wants to achieve reuse and create software systems from ex-
isting software. As software engineering, the methodical reuse of software artifacts has a
long tradition and was early motivated in 1968 [McIlroy 1968], leading to the development
of several languages, methods, and tools. Object-oriented programming, object-oriented
frameworks, aspect-oriented programming, components, services, to name a few, have
been proposed but current research and practical experience suggest that we need more
effective and systematic way to achieve software reuse and customization.

Software Product Line (SPL) engineering is a paradigm shift towards modeling and de-
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veloping software system families rather than individual systems. SPL engineering em-
braces the ideas of mass customization and software reuse. It focuses on the means of ef-
ficiently producing and maintaining multiple similar software products, exploiting what
they have in common and managing what varies among them. This is analogous to what
is practiced in the automotive industry, where the focus is on creating a single production
line, out of which many customized but similar variations of a car model are produced.
In an SPL approach, different software products of a domain can be assembled from com-
mon and reusable artifacts (core assets). Throughout the software development process,
SPL engineering institutionalizes systematic reuse of artifacts from various natures that
include reusable software components, domain models, requirements statements, docu-
mentation and specifications, test cases, source code, etc. The basic assumption behind
SPL engineering is that reuse-in-the-large works best in families of related systems (e.g.,
software products from a same domain) from which common/reusable artifacts have been
initially identified and co-developed.

In the vast majority of approaches, reusing artifacts of an SPL requires the systematic
identification and exploitation of commonality (i.e., the common characteristics of products)
and variability (i.e., the differences between products). Commonality and variability are
everywhere and cross-cut many different types of SPL artifacts. A lack of flexibility in
the reusable artifacts or a scope that is too large may have important consequences on
the SPL engineering process (e.g., unnecessary software development effort). Therefore a
fundamental challenge is to model and manage commonality and variability of an SPL.

In this thesis, we focus on feature models, a formalism originally introduced by [Kang
et al. 1990] and now widely used in SPL engineering. Feature models allow SPL practi-
tioners to describe commonality and variability of an SPL in terms of features. Feature
models characterize, in a very concise way, the valid combination of features (also called
configurations) supported by an SPL – for each valid configuration authorized by a feature
model should correspond a product of an SPL.

1.2 CONTRIBUTION

The analysis of the state-of-the-art reveals that feature models are used in a wider scope
than originally planned in 1990. The reason is that practitioners need to manage an increas-
ing complexity characterized by a large number of concerns, artifacts and sub-systems that
are part of an SPL. Using only one monolithic feature model is not realistic to model vari-
ability of an SPL. Feature models are rather multiple: They document variability of several
(different kinds of) artifacts, at different levels of abstractions, are used and perceived dif-
ferently by different stakeholders or suppliers and are combined together to model the
entire variability of a system. We defend the idea that the phenomenon of increasing com-
plexity of feature models can be handled by applying the principles of separation of concerns
(SoC). The contribution of the thesis is as follows:

• a set of composition and decomposition operators dedicated to the formalism of fea-
ture models for supporting separation of concerns. The operators are formally de-
fined, implemented with a fully automated algorithm and guarantee properties in
terms of sets of configurations. We show how the composition and decomposition
operators can be combined together or with other reasoning and editing operators to
realize complex tasks ;
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• a domain-specific textual language, FAMILIAR (for FeAture Model scrIpt Language
for manIpulation and Automatic Reasoning), which provides a practical solution for
managing feature models on a large scale. An SPL practitioner can combine the dif-
ferent operators and manipulate a restricted set of concepts (feature models, features,
configurations, etc.) using a concise notation and language facilities. FAMILIAR hides
implementation details (e.g., solvers) and comes with a development environment ;

• various applications of the operators and usages of FAMILIAR in different domains
(medical imaging, video surveillance) and for different purposes (scientific work-
flow design, variability modeling from requirements to runtime, reverse engineer-
ing), showing the applicability of both the operators and the supporting language.

1.3 OUTLINE

In Part I, we discuss the state-of-the-art and present background on software product line
engineering (Chapter 2) and feature models (Chapter 3). We then describe an example
that involves the management of set of feature models, called multiple feature models, in
the domain of medical imaging workflows (Chapter 4). Using this example, we identify
different requirements for separation of concerns in feature modeling. We also show that
the identified issues are not properly tackled by existing works. The example will be used
throughout the document to illustrate and evaluate our contributions.

In Part II, we apply separation of concerns to feature models using a set of complemen-
tary operators. In Chapter 5, we describe the semantics and the implementation of a set
of composition operators (insert, aggregate, merge). In Chapter 6, we focus on the merge
operator that produces compact feature models from a set of existing feature models and
thus ease their management and analysis. We illustrate the use of the merge operator
when building a catalog of image analysis services provided by different suppliers. In
Chapter 7, we present a slicing technique to decompose feature models that, combined
with other composition/reasoning operators, brings new capabilities to SPL practitioners
(update and extraction of feature model views, reconciliation of feature models and rea-
soning about different kinds of variability, etc.).

In Part III, we present the language FAMILIAR. In Chapter 8, we illustrate its syntax, the
integration of composition/decomposition operators, as well as other facilities to manip-
ulate and reason about feature models. In Chapter 9, details of the implementation and
performance of two important operators (merge and slice) are given.

In Part IV, we show how the operators and FAMILIAR have been used in different appli-
cations. In Chapter 10, we revisit the example introduced in Chapter 4. We show how we
can combine multiple variability artifacts to assemble coherent workflows and facilitate
the selection of services from among sets of competing services organized in a catalog. In
Chapter 11, we show how in dynamic adaptive systems, such as video surveillance sys-
tems, the variability requirements can be expressed and then refined at design time so that
the set of valid software configurations to be considered at runtime may be highly reduced.
In Chapter 12, we develop automated techniques to extract and combine different variabil-
ity descriptions of a software architecture. Then, alignment and reasoning techniques are
applied to integrate the architect knowledge and reinforce the extracted feature model.
We illustrate the reverse engineering process when applied to a representative software
system, FraSCAti, and we report on our experience in this context.



4 CHAPTER 1. INTRODUCTION

In Part V, Chapter 13 summarizes the contribution, while Chapter 14 discusses differ-
ent perspectives in the medium term (regarding the operators, the language and validation
elements) and in the long term (e.g., relationships between feature models and other mod-
els).
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Software Product Line Engineering

In this chapter, we give a brief introduction to software product line engineering and its
main concepts (customization, reuse, domain, variability). We notably describe the fun-
damental separation between domain and application engineering. We discuss the pos-
sible roles of model-based approaches in this context. Furthermore, we present some
approaches, techniques and tools to model, manage and realize variability of a software
product lines.

2.1 SOFTWARE PRODUCT LINES

The traditional focus of software engineering is to develop individual software systems,
i.e., one software system at a time. A typical development process starts with the analy-
sis of customers’ requirements and then several development steps (specification, design,
implementation, testing) are performed. The result obtained is a single software product.
In contrast, Software Product Line (SPL) engineering focuses on the development of mul-
tiple similar software systems from a common codebase [Bass et al. 1998, Clements and
Northrop 2001, Pohl et al. 2005].

2.1.1 Mass Customization and Reuse

SPL engineering relies on the idea of mass customization [Pine 1999] known from many in-
dustries. For instance, in the automotive industry, the focus is on creating a single produc-
tion line, out of which many customized but similar variations of a car model are produced.
Mass customization takes advantage of similarity principle and modular design to mas-
sively produce customized products. Many industries, such as avionics, telecommunica-
tions, or automotive industry, are now building the same multiple similar software-intensive
products over and over again. Therefore, there is an opportunity to massively reuse com-
mon software artifacts. Software mass customization, and so SPL engineering, focus on
the means of efficiently producing and maintaining multiple similar software products,
exploiting what they have in common and managing what varies among them. SPL engi-
neering aims at developing related variants in a systematic, coordinated way and provid-
ing tailor-made solutions for different customers. Instead of individually developing each
variant from scratch, commonalities are conceived only once.

The following definition given by [Clements and Northrop 2001] captures the general
idea behind an SPL:

"A software product line is a set of software-intensive systems sharing a common,
managed set of features that satisfy the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a prescribed way."
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Historically, the idea to develop a set of related software products can be traced back to
the idea of program families [Parnas 1976]. SPLs drew attention of the software engineer-
ing community only in the mid of 1990s when software begun to be integrated massively
in families of electronic products, mobile phones [Maccari and Heie 2005] being the most
popular, but several other areas, such as automotive systems, medical systems, aerospace
or telecommunication were also targeted by SPLs.

An important characteristic of SPL engineering is its emphasis on software reuse [Jacob-
son et al. 1997]. A general definition of software reuse is given in [Krueger 1992]

"Software reuse is the process of creating software systems from existing software
rather than building software systems from scratch."

Reuse, as a software strategy for decreasing development costs and improving qual-
ity, is not a new idea. It has been a popular topic since the publication of seminal pa-
pers [McIlroy 1968, Parnas 1976]. Past reuse strategies, which focused on reusing relatively
small pieces of code or opportunistically cloning code designed for one system for use in
another, have not been profitable. Object-oriented programming offers several mecha-
nisms to develop generic units of functionality, but reuse is typically achieved on a small
scale. Object-oriented frameworks provide reusable concepts but are often large, complex
and/or undocumented so that locating and instantiation these concepts for implementing
a software system is hard, even with extensive skills. Components – as independently-
deployable units of composition with contractually specified interfaces [Szyperski et al.
2002] – promise reuse-in-the-large, but the optimal trade-off between functionality, size
and reusability of components is very hard to find.

Reuse is still a challenging problem in software engineering. Developing software sys-
tem families rather than individual systems can facilitate reuse, since products of the fam-
ily share common features (e.g., functionality) and are from the same domain. As noticed
by [Glass 2001]:

"Reuse-in-the-large works best in families of related systems, and thus is domain
dependent."

SPL engineering is based on this idea. It is a paradigm shift towards planned, proac-
tive and systematic reuse of the common artifacts (also called core assets), where related
products are treated as a product family. Their co-development can then be planned from
the beginning, instead of starting from scratch or copying and editing from a previous
product. SPLs promise several benefits, especially for organizations that develop software-
intensive products, but research is more and more needed due to the increasing complexity
and diversity of these products. Part of the research on SPL engineering is related to the
analysis of business and organizational factors, such as market analysis, responsibilities
assignment, risks management, etc. It mostly concerns "product line" management. In this
thesis, we mainly focus on technical issues related to software development efforts.

2.1.2 Expected Benefits

Compared to traditional single-product development, SPLs promise several benefits [Bass
et al. 1998, Clements and Northrop 2001, Pohl et al. 2005]: Due to co-development and
systematic reuse, software products are expected to be produced faster, with lower costs,
and higher quality. The ability to customize software products to different contexts opens
new perspectives. For instance, although resources in embedded systems are scarce and
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hardware is heterogeneous, efficient variants can be tailored to a specific device or scenar-
ios [Beuche et al. 2004]. Real world success stories of software mass customization come
from diverse areas such as mobile phones, telecom networks, medical systems, computer
printers, diesel engines, cars, ships, and airplanes1. There are many companies that report
significant benefits from SPLs: Alcatel, Hewlett Packard, Philips, the Boeing Company, and
Robert Bosch GmBh7 presented their experiences at the 2000 SPL conference [Northrop
2002]. For example, Bass et al. summarize that, with SPLs, Nokia can produce 30 instead
of previously 4 phone models per year; Cummins, Inc. reduced development time for a
software for a new diesel engine from one year to one week; Motorola observed a 400 %
increase in productivity, etc [Bass et al. 1998].

2.1.3 Extractive, Reactive, Proactive Strategies

Although many organizations were aware of the huge potential benefits of software mass
customization, the associated costs, risks, and resources are a prohibitive adoption barrier
for many [Krueger 2001]. Historically, practices of SPL engineering combine a massive up-
front investment. In the worst case, it consists in analyzing, architecting, designing, and
implementing all product variations on the foreseeable horizon. This proactive approach
might suit organizations that can predict their SPL requirements well into the future and
that have the time and resources for a long development cycle. Unfortunately, organi-
zations cannot afford to slow or stop production for a few months, even if the potential
payoff is huge.

Clements and Krueger argue that organizations transitioning to SPL engineering need
more flexible process, with low-cost adoption methods, that go beyond a pure proactive
approach [Clements and Krueger 2002]. Krueger proposes three adoption strategies –
proactive, reactive, and extractive approaches – that can be possibly combined by SPL
organizations [Krueger 2001; 2006].

With the proactive approach, the organization analyzes, designs and implements a com-
plete software mass customization production line to support the full scope of products
needed on the foreseeable horizon. From the analysis and design, a complete set of com-
mon and varying requirements, product definitions, source code, etc. are implemented.

With the reactive approach, the organization incrementally grows their software mass
customization production line when the demand arises for new products or new require-
ments on existing products. The common and varying artifacts are incrementally extended
in reaction to new requirements. This incremental approach offers a quicker and less ex-
pensive transition into software mass customization.

With the extractive approach, the organization capitalizes on existing custom software
systems by extracting the common and varying source code into a single production line.
This high level of software reuse enables an organization to very quickly adopt software
mass customization. For example, developers often take an extractive approach for creat-
ing the SPL by refactoring and decomposing one or more legacy applications into reusable
and composable units.

These approaches are not necessarily mutually exclusive. For example, a common ap-
proach is to bootstrap a software mass customization effort using the extractive approach
and then move on to a reactive approach to incrementally evolve the SPL over time.

1For a larger overview of famous SPLs, consult SEI’s SPL Hall of Fame: http://www.sei.cmu.edu/
productlines/plp_hof.html

http://www.sei.cmu. edu/productlines/plp_hof.html
http://www.sei.cmu. edu/productlines/plp_hof.html
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Northrop proposes a related classification and distinguishes different production
strategies for realizing the core assets [Northrop 2002]. The production strategy can be
top down (starting with a set of core assets and spinning products off of them), bottom up
(starting with a set of products and generalizing their components to produce the product
line as-sets), or a mix of both.

2.2 FRAMEWORK FOR SOFTWARE PRODUCT LINE ENGINEERING

Organizations that have succeeded with SPLs vary widely in the nature of their software
products and their organizational structure. Several methodologies, techniques and tools
have been developed in the context of SPL engineering. Nevertheless, there are univer-
sal essential activities and practices that emerge, being related to the ability to construct
new products from a set of common assets while working under the constraints of various
organizational contexts and starting points. As a result, several frameworks2 have been pro-
posed in the ITEA projects, ESAPS, CAFÉ, FAMILIES [van der Linden 2002, Böckle et al.
2004] or in books (e.g., see [Czarnecki and Eisenecker 2000, Clements and Northrop 2001,
Pohl et al. 2005]). The SEI also maintains an online document that describes a framework
for product line development [SEI 2011]. These frameworks are all based on the differ-
entiation between the domain and application engineering processes originally proposed
by [Weiss and Lai 1999] (see Section 2.2.1). Furthermore, numerous paradigms addition-
ally distinguish between problem space and solution space (see Section 2.2.2). In this con-
text, model-based approaches have a role to play: We present their principles and some
background (see Section 2.2.3).

2.2.1 Domain Engineering and Application Engineering

SPL engineering is separated in two complementary phases. Domain engineering is con-
cerned with development for reuse while application engineering is the development with
reuse (see Figure 2.1).

The idea behind this approach to SPL engineering is that the investments required to
develop the reusable artifacts during domain engineering, are outweighed by the benefits
of deriving the individual products during application engineering [Deelstra et al. 2004;
2005]. A fundamental reason for researching and investing in sophisticated technologies
for SPLs is to obtain the maximum benefit out of this up-front investment, in other words,
to minimize the proportion of application engineering costs (see Figure 2.2).

Domain Engineering. The process to develop a set of related products (i.e., an SPL) in-
stead of a single product is called domain engineering. An SPL must fulfill not only the
requirements of a single customer but the requirements of multiple customers in a do-
main, including both current customers and potential future customers. Therefore the
entire domain and its potential requirements are analyzed, for example, to scope the SPL
and identify what differs between products, to identify reusable artifacts and plan their
development, etc. Domain Engineering is development for reuse: common and reusable
artifacts (requirements, components, test cases, etc.) are factoring out so that their reuse
is facilitated. It is usually composed of four activities: domain analysis, domain design,

2The word framework refers here to conceptual framework that serves as the guiding principles of research
within a particular discipline. There is no intended connection to software frameworks.
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Figure 2.1: Framework for SPL engineering: domain and application engineering, problem
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Figure 2.2: Challenge for SPL engineering: decreasing the proportion of application engi-
neering effort [Deelstra et al. 2004]

domain coding and domain testing. In the domain analysis, the commonalities and dif-
ferences between potential variants are identified and described, for example, in terms of
features. In this context, a feature is a first-class domain abstraction, typically an end-user
visible increment in functionality [Apel and Kästner 2009] (see Section 3.2.1 for a detailed
discussion of the term feature). Then, developers design and implement the SPL such that
different variants can be constructed from common and variable parts.

Application Engineering. Application Engineering is development with reuse (also called
product development). Concrete products are derived using the common and reusable
artifacts developed in domain engineering. It is composed of four activities, in line with
the activities of domain engineering: application requirements engineering, application
design, application coding and application testing. This process is built on the domain en-
gineering one and consists in developing a final product, reusing the reusable artifacts and
adapting the final product to specific requirements. Ideally, the customer’s requirements
can be mapped to elements (e.g., features) identified during domain engineering, so that
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the variant can be constructed from existing common and variable parts of the SPL imple-
mentation. The process of constructing products from the domain assets is called product
derivation. Depending on the form of implementation, there can be different automation
levels of the application engineering process, from manual development effort to more
sophisticated technology including automated variant configuration and generation.

2.2.2 Problem Space and Solution Space

One of the toughest challenges for software engineering, and by extension SPL engineer-
ing, is the inherent complexity of modern software systems. As noted in [Brooks 1987],
there are two types of complexity. On the one hand, essential complexity is inherent to the
problem being solved and cannot be removed. On the other hand, accidental complexity is
non-essential to the problem and is more related to implementation issues. In particular,
the use of inadequate technology with regard to the targeted problem (e.g., the use of an
assembly language to develop a chess engine) can add significant accidental complexity
during the software development. The invention of high level programming languages,
for instance, had made significant improvement in the area of accidental complexity.

The terms problem and solution (or "problem model" and "solution model", "problem
domain" and "solution domain", "problem space" and "solution space", and so on) are com-
monly employed to denote the contrast between the system under study and its applica-
tion domain [Génova et al. 2009]. This can also be expressed with the terms "problem
analysis" and "solution design". Several paradigms (see below) explicitly distinguish be-
tween the problem space and the solution space and propose to separate the two spaces
during software (e.g., SPL) development (see Figure 2.1).

The problem space comprises domain-specific abstractions that describe the require-
ments on a software system and its intended behavior. For instance, domain analysis takes
place in the problem space, and its results are usually documented in terms of features. The
solution space comprises implementation-oriented abstractions, such as code artifacts. In
the solution space, abstractions have been used in the field of programming languages
ranging from assembly languages to object-oriented languages that meaningfully help the
programmer to organize both structural and behavioral information constituting software.

Between elements (e.g., requirements, features) in the problem space and elements in
the solution space, there is a mapping that describes which implementation artifact belongs
to which requirements or features. Depending on the implementation approach and the
degree of automation, this mapping can have different forms and complexity, from simple
implicit mappings based on naming conventions to complex rules encoded in generators
or transformations [Czarnecki and Eisenecker 2000].

Figure 2.1 gives a rather idealized, simplified view of the framework. Mappings be-
tween the problem and the solution space can be chained ; a mapping could take two or
more specifications and map them to one (or more) solution space (this is common when
different aspects of a system are represented) ; a mapping can also implement a problem
space in terms of two or more solution spaces [Czarnecki and Eisenecker 2000]. Further-
more the transition between domain and application engineering can be more or less com-
plex (e.g., the degree of automation may vary (see Figure 2.2).

2.2.3 Possible Roles of Model-Driven Engineering

Abstraction and Model. In order to be manageable, we need to reduce this number of
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elements and focus on the important points rather than details. This is exactly the purpose
of abstraction [Kramer 2007]:

"Abstraction is the mapping from one representation of a problem to another which
preserves certain desirable properties and which reduces complexity."

Approaches centered on the use of models (e.g., model-driven engineering, aspect-
oriented modeling, generative programming) have been proposed in order to effectively
represent, define and use abstractions for any part of a software system. Models have been
used for ages in various scientific disciplines including biology, economy, house building
or geography [Bézivin 2005]. In the context of software engineering, several definitions of
the notion of model have been given (e.g., nine definitions are reported in [Muller et al.
2009]), but, in essence, a model is an abstraction of some aspect of a system under study
(SUS). A SUS can be an existing system, or a system under development. A model is an
abstraction since some details are hidden or removed to simplify and focus attention. A
model is an abstraction since general concepts can be formulated by abstracting common
properties of instances or by extracting common features from specific examples.

Models are created to serve particular purposes, for example, to present a human under-
standable description of some aspect of a SUS or to present information in a form that can
be mechanically analyzed. Various kinds of automated analysis can be performed to reason
about some relevant properties of a SUS. Moreover models can processed by computer-
based tools in order to derive other useful models and/or some of the artifacts (such as
test cases, performance profiles, or documentation) composing a real software system.
This derivation process is called model transformation. Numerous approaches and tech-
niques have been developed for supporting model transformation (e.g., see [Czarnecki
and Helsen 2006] for an overview of features of model transformation approaches).

Model, Metamodel, Language. As a model is an abstraction (here, simplification) of a SUS,
the set of questions addressable by a model is necessarily a subset of the questions that can
be asked to the actual SUS. The set of statements expressed in a model typically uses a
set of predefined modeling constructs and constraints restricting statement usage. It is the
role of a metamodel to define these constructs (i.e., their abstract syntax) and constraints;
without a metamodel, models cannot be built, cannot be validated or processed by tools.
Simply providing a metamodel is not sufficient to use models. It is also needed to describe
what is the meaning of the individual metamodel constructs as well as their composition.
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Model semantics provides a mapping between the syntactical constructs and the seman-
tic domain [Harel and Rumpe 2004]. Both a metamodel and its associated semantics are
required to fully build, validate and understand models.

Modeling languages are used to build valid models (i.e., conformant to a metamodel).
Depending on their purposes, modeling languages may propose textual or graphical con-
structs which are formally defined (formal syntax and semantics) or semi-formally defined
(well-defined syntax but semantics defined in natural language). The first category is well
adapted for reasoning (proofs, model checking, etc.). The second category is more accessi-
ble and yielded general purpose modeling languages such as the UML (Unified Modeling
Language) [Rumbaugh et al. 2004].

Model-based approaches. Various approaches consider models as first-class entities and
primary building blocks for constructing software. Model-driven Engineering (MDE) is pri-
marily concerned with reducing the gap between problem and solution space through the
use of technologies that support systematic transformation of problem-level abstractions
to software implementations [Schmidt 2006]. The complexity of bridging the gap is tack-
led through the use of models that describe complex systems at multiple levels of abstrac-
tion and from a variety of perspectives, and through automated support for transform-
ing and analyzing models. In the MDE vision of software development, models are the
primary artifacts of development and developers rely on computer-based technologies to
transform models to running systems. Various MDE flavors have been developed to date,
for example the OMG’s Model Driven Architecture (MDA) [Kleppe et al. 2003] initiative
which contributed to popularize MDE’s ideas via standardization. Aspect Oriented Model-
ing (AOM) approaches provide advanced mechanisms for separation of concerns such as
mechanisms for encapsulating crosscutting concerns and for composing concerns to form
integrated models [Aspect-Oriented Modeling Workshop Series 2011].

Model-based Approaches in SPL engineering. MDE and other related paradigms are not
primary targeted to the development of SPLs. However, SPL engineering can benefit from
models and transformations (see Figure 2.1). Models can be used both in the problem space
and solution space to represent different aspects of an SPL and provide domain-specific
abstractions. Model transformations can be performed to generate lower-level models (in
the solution space), and eventually code, from higher-level models (in the problem space).
In addition, model transformations can ease and automate the transition between domain
and application engineering. In the context of SPLs, MDE is gaining more attention as a
provider of techniques and tools that can be used to manage the complexity of SPL de-
velopment. For example, Generative Software Development (GSD) has been proposed and
aims at modeling and implementing system families in such a way that a given system
can be automatically generated from a specification (model) written in one or more textual
or graphical domain-specific languages [Czarnecki and Eisenecker 2000].

2.3 VARIABILITY MANAGEMENT

Domain engineering and application engineering (and subsequently the separation be-
tween the problem space and the solution space) describe a very general process frame-
work (see Figure 2.1) for SPL engineering. Central and unique to SPL engineering is the
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management of variability, i.e., the process of factoring out commonalities and systematiz-
ing variabilities of documentation, requirements, code, test artifacts, models. For each
step of the proposed framework, different approaches, formalisms, and tools can be used.
For example, there are different scoping approaches [John and Eisenbarth 2009], differ-
ent mechanisms to perform domain analysis or model variability (see Section 2.3.2) and
different implementation mechanisms (see Section 2.3.3).

2.3.1 Variability

Several definitions of variability have been given in the literature.

Variability in Time vs. Variability in Space. Existing work on software variation manage-
ment can be generally split into two categories. The variability in time and the variability
in space are usually considered as fundamentally distinct dimensions in SPL engineering.
Pohl et al. define the variability in time as "the existence of different versions of an artifact
that are valid at different times" and the variability in space as "the existence of an artifact in
different shapes at the same time" [Pohl et al. 2005]. Variability in time is primarily concerned
with managing program variation over time and includes revision control system and the
larger field of software configuration management. The goal of SPL engineering is mainly
to deal with variability in space [Erwig 2010, Erwig and Walkingshaw 2011].

Commonality and Variability. Weiss and Lai define variability in SPL as "an assumption
about how members of a family may differ from each other" [Weiss and Lai 1999]. Hence vari-
ability specifies the particularities of a system corresponding to the specific expectations of
a customer while commonality specifies assumptions that are true for each member of the
SPL. [Svahnberg et al. 2005] adopt a software perspective and define variability as the "the
ability of a software system or artifact to be efficiently extended, changed, customized or configured
for use in a particular context". At present, these two definitions are sufficient to capture
the notion of variability: the former definition is more related to the notions of domain
and commonality while the later focuses more on the idea of customization. Nevertheless,
there is no one unique perception or definition of variability: [Bachmann and Bass 2001]
propose different categories of variabilities, [Svahnberg et al. 2005] have defined five levels
of variability while some authors distinguish essential and technical variability [Halmans
and Pohl 2003], external and internal variability [Pohl et al. 2005], product line and soft-
ware variability [Metzger et al. 2007]. We will further discuss the notion of variability in
Section 3.2.

2.3.2 Variability Modeling

Managing variability becomes a primary concern to tame complexity of an SPL. It was
early recognized that it is necessary to model variation points and their variants to express
variability [Jacobson et al. 1997]. In the initial phases of a SPL project, an efficient commu-
nication between SPL designers and customers about requirements and hence variabilities
is a critical success factor. One way to communicate efficiently on variability is to model it
(see Section 2.2.3). Variability modelling languages are therefore used to produce variabil-
ity models. Variability modeling languages can be graphical, textual or a mix of both. Vari-
ability models document variation points and their variants, facilitate the identification
and delimitation (or scope) of variabilities. They are also used for many implementation
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approaches and for automated generation of variants (see next section) or for automated
reasoning and error detection (see next chapter).

Amalgamated vs Separated Approaches. As noted by [Haugen et al. 2008], there are two
categories of techniques to introduce variability into modeling languages (represented as
metamodels): amalgamated and separated. The amalgamated approach proposes to aug-
ment the metamodel with variability concepts. In [Atkinson et al. 2000, Gomaa 2004, Ziadi
and Jézéquel 2006], the authors extend the UML metamodel for modeling variability in
multiple UML diagrams like Class or Sequence diagram. In [Morin et al. 2009b, Perrouin
et al. 2010], the authors propose a more generic solution that can be applied to any kind
of metamodel and fully supported by a tool. Clafer [Bąk et al. 2011] is a meta-modeling
language with first-class support for feature modeling. More precisely, the language inte-
grates feature modeling (i.e., a formalism to model variability, see below) into class mod-
eling, so that variability can be naturally expressed in class models.

In a separated approach, the metamodel and the variability metamodel are distinct and
are related via a mapping. An illustration of this second approach can be found in [Hei-
denreich et al. 2008] (supported by FeatureMapper [FeatureMapper 2008]) or in [Czarnecki
and Antkiewicz 2005]. It directly relates features and model elements and derives product
models by removing all the model elements associated with non-selected features. An-
other example of the separated approach is VML* [Zschaler et al. 2009], which proposes a
family of textual languages dedicated to the modeling of relationships between elements.
VML* and FeatureMapper have been compared in [Heidenreich et al. 2010] in terms of
automation, scalability, expressiveness and evolution of the mapping.

Variability Models. Feature model is currently the most popular technique to model vari-
ability. Many extensions and dialects of feature models have been proposed in literature
(e.g., FORM [Kang et al. 1998], FeatureRSEB [Griss et al. 1998], [Riebisch 2003]; [Beuche
et al. 2004], [Czarnecki et al. 2005b] ; [Schobbens et al. 2007], [Asikainen et al. 2006; 2007]).
The Chapter 3 is dedicated to the formalism of feature model.

There are also other approaches to separate variability description (e.g., the orthogo-
nal variability model (OVM) [Pohl et al. 2005] or Covamof [Sinnema et al. 2006, Sinnema
and Deelstra 2008]). Metzger et al. show how to convert an OVM into a feature model,
so that the two formalisms can be combined to model variability [Metzger et al. 2007]. A
similar approach to representing variability in a separate model can also be found in the
decision models [Rabiser et al. 2007]. Feature modeling can be also compared with creat-
ing a configuration in the manufacturing industry. One such approach is exemplified by a
configurator called WeCoTin [Asikainen et al. 2004]. Chen et al. select and survey 32 ap-
proaches in the literature and report on the use of variability models: fourteen approaches
used feature models, six approaches used the decision modeling and twelve approaches
used other kinds of variability models [Chen et al. 2009].

2.3.3 Variability Implementation

Implementing variability is essential to SPL engineering. Various variability implementa-
tion techniques have been developed, tool supported, evaluated and/or compared, both at
the code or the model level. To realize variability at the code level, SPL methods classically
advocate usage of inheritance, components, frameworks, aspects or generative techniques.
Svahnberg et al. present a taxonomy of variability realization techniques [Svahnberg et al.
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2005]. We distinguish two large groups, annotative and compositional approaches, that
can be applied either at the code level or at the model level.

Annotative Approaches. At the code level, code fragments are annotated in a common
code base and removed in order to generate variants (e.g., #ifdef and #endif directives of
the C preprocessor cpp to conditionally remove feature code before compilation is a typical
example). At the model level, Czarnecki and Antkiewicz (e.g., [Czarnecki and Antkiewicz
2005, Czarnecki and Pietroszek 2006]), Heidenreich et al. (e.g., [Heidenreich et al. 2010]), or
some model checking approaches (e.g., [Lauenroth et al. 2009, Classen et al. 2010b; 2011])
use annotations on model elements. In these cases, a global model is tailored to a specific
product by activating or removing model elements from a combination of features. Simi-
larly, Saval et al. use the term pruning [Saval et al. 2009] and Voelter and Groher introduce
the term negative variability [Voelter and Groher 2007] to describe model-based annotative
approach. Recently, the Common Variability Language (CVL) has been proposed to pro-
vide a generic and separate approach for modeling variability in any models defined by a
metamodel by means of Meta Object Facility [Svendsen et al. 2010].

Compositional Approaches. At the code level, features are implemented separately in dis-
tinct modules (files, classes, packages, plug-ins, etc.), which can be composed in different
combinations to generate variants. Voelter et al. describe variability implemented with
compositional approaches as positive variability [Voelter and Groher 2007] since variable
elements are added together. Many techniques have been proposed to realize composi-
tional approaches (frameworks, mixin layers, aspects [Mezini and Ostermann 2004], step-
wise refinement [Batory et al. 2004], etc.). In model-based SPL engineering, the idea is
that multiple models or fragments, each corresponding to a feature, are composed to ob-
tain an integrated model from a feature model configuration. Aspect-oriented modeling
techniques have been applied in the context of SPL engineering [Morin, Brice and Barais,
Olivier and Jézéquel, Jean-Marc and Ramos, Rodrigo 2007, Morin et al. 2008]. Apel et al.
propose to revisit superimposition technique and analyze its feasibility as a model com-
position technique [Apel et al. 2009]. Perrouin et al. propose a flexible, tool-supported
derivation process in which a product model is generated by merging UML class diagram
fragments [Perrouin et al. 2008].

Language and Tool Support. In addition, several languages and tools have been developed
to support the two approaches. CIDE is a tool for annotating code fragments with #ifdef
and #endif directives. FeatureHouse is language-independent composition tool in which
software artifacts written in various languages can be composed, for example, source code,
test cases, models, documentation, makefiles [Kästner 2010]. FeatureHouse and CIDE are
integrated into FeatureIDE development environment [Kästner et al. 2009a]. FeatureMap-
per is a tool that allows for defining mappings of features to model elements specifying
feature realisations [Heidenreich et al. 2010; 2008]. XML-based Variant Configuration Lan-
guage (XVCL) is a variation mechanism for managing variability in SPLs based on genera-
tive techniques [Zhang and Jarzabek 2004]. The software composition community (which
encompass Aspect-Oriented Software Development (AOSD), Feature-Oriented Software
Development (FOSD), Component-Based Software Development (CBSD), etc.) proposes
different but complementary composition mechanisms, such as aspect weaving, mixins,
feature composition, component composition to compose software artifact, at code level
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or model level. The underlying tools can be adapted to support SPL development.

2.4 CONTRIBUTION CHOICES

In this chapter, we have described the roots of SPL engineering (mass customization,
reusability, domain, commonality and variability). The SPL engineering framework we
present is open for different domain modeling techniques, different ways to express con-
figuration knowledge, and different implementation techniques. We have identified vari-
ability management as one crucial challenge that should be tackled to achieve systematic
reuse. We have surveyed a number of techniques to model and realize model variability.

Based on these observations, we choose to:
focus on variability modeling: we do not develop specific techniques to implement vari-

ability, for example, for automatically deriving products from the different artifacts
(e.g., models). We rather consider that existing approaches (feature-oriented, gener-
ative, aspect-oriented, model-based, etc.) can be applied in the context of our contri-
bution ;

separate variability description: there are two opposite approaches to model variability
(amalgamated or separated approach). We choose a separated approach where the
variability description is expressed in a dedicated model and does not alter the arti-
facts (e.g., models) ;

rely on feature models: different formalisms have been proposed in the literature to
model variability and commonality among the products of an SPL. As we will see
in the next chapter, feature models have a long history and are the de facto standard
for separating variability description of an SPL.
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Feature Models

Feature modeling is a variability modeling technique, which has generated a lot of inter-
est in SPL engineering since their introduction by [Kang et al. 1990] in the FODA method.
Feature models are currently the de-facto standard for representing variability. We first de-
scribe the essential principles and semantic foundation of feature models (see Section 3.1).
We then surveyed in which contexts and for which purposes feature models are used in
SPL engineering (see Section 3.2).

3.1 SEMANTICS OF FEATURE MODELS

Figure 3.1 gives a first visual representation of a feature model. Throughout the thesis,
we will rely on the same graphical notation used in this figure, largely inspired by the
one proposed in [Czarnecki and Eisenecker 2000]. Features are graphically represented
as a rectangles while some graphical elements (e.g., unfilled circle) are used to describe
the variability (e.g., a feature may be optional). Intuitively, the feature model depicted
in Figure 3.1 compactly describes a family of medical images, where each member of the
family is a medical image corresponding to an unique combination of features.

AnonymizedFormat

DICOM Nifti Analyze

Modality Acquisition

MRI CT SPEC

T1 T2
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Medical Image
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Mandatory

Xor-Group

Or-Group

Figure 3.1: A family of medical images described with a feature model

3.1.1 The Essence of Feature Modeling

In essence, a feature model is a hierarchy of features with variability. From a general con-
ceptual perspective, a feature model of a concept describes a set of valid feature combinations,
each representing an instance of that concept. For example, in Figure 3.1, a feature model
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describes the concept of a medical image. An instance of that concept is a medical image
whose Modality Acquisition is SPEC, whose Format is DICOM and being not Anonymized.
In the rest of the thesis, the font style aFeature is generally used when referring to a feature
of a feature model. From an SPL perspective, we can similarly consider that the feature
model depicted in Figure 3.1 describes an SPL of medical images, where each product of
the SPL is a medical image.

Feature Hierarchy. The primary purpose of a hierarchy is to organize a potentially large
number of concepts (i.e., features) into multiple levels of increasing detail. The hierarchy is
usually represented as a rooted tree, the root feature being the most general concept (here:
Medical Image). Edges in feature models model parent-child relations between features
and aim at aggregating new concepts (i.e., features) or specializing a concept. For example,
Medical Image has three child features ( Modality Acquisition, Format and Anonymized) that
suggest that a medical image is composed of a modality acquisition, a format and is po-
tentially anonymized. The feature Modality Acquisition is in turn a general concept that can
be specialized (e.g., MRI is a special kind of modality acquisition).

Features and Variability. Another important aspect of feature models is the modeling of
variability. Variability defines what the allowed combinations of features (also called con-
figurations) are, i.e., restricts the set of valid instances of a concept. Variability in a feature
model is expressed through a number of mechanisms. When decomposing a feature into
subfeatures, the subfeatures may be optional or mandatory. For example, a medical image
has necessary a format and therefore the feature Format is mandatory. However a medical
image may not be anonymized (the feature Anonymized is optional). Note that a feature is
mandatory or optional in regards to its parent feature (e.g., a feature may be modeled as a
mandatory feature and not be necessary included in a configuration in the case its parent
is not included in the configuration). Features may also form Or-, or Xor-groups. Features
MRI, CT, SPEC or PET form an Xor-group – they are mutually exclusive so that a modality
acquisition cannot be MRI and CT at the same time. Features T1 and T2 form an Or-group
– an MRI modality acquisition can be either T1, T2 or both T1 and T2. In addition, implies
or excludes constraints (called composition rules in [Kang et al. 1990]) that cut across the hi-
erarchy can be specified to express more complex dependencies between features. Though
implies and excludes constraints can be depicted graphically (and thus can be part of the
diagram), we systematically use a textual representation, outside the feature diagram. To
be expressively complete regarding propositional logic, any constraint written in propo-
sitional logic including ∨ (disjunction), ∧ (conjunction), ¬ (negation), ⇒ (implication), ⇔
(biimplication) can be used. We consider that a feature model is composed of a feature
diagram (see Definition 1) plus a set of constraints expressed in propositional logic (see
Definition 2).

A feature model defines a set of valid feature configurations. The validity of a configu-
ration is determined by the semantics of feature models, for example, in Figure 1 DICOM,
Nifti and Analyze are mutually exclusive and cannot be selected at the same time. A valid
configuration is obtained by selecting features in a manner that respects the following
rules:

• if a feature is selected, its parent must also be selected (hence an edge from one fea-
ture to another not only denotes a conceptual relationship between two features but
also a logical dependency) ;
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• if a parent is selected, the following features must also be selected: all the mandatory
subfeatures, exactly one subfeature in each of its Xor-groups, and at least one of its
subfeatures in each of its Or groups ;

• constraints relating features in different subtrees must hold ;

Feature Diagram. The terms feature model and feature diagram are employed in the literature,
usually to denote the same thing. The word "diagram" suggests a graphical representation
of a feature model. We rather consider that a feature model can be graphically represented
by means of a feature diagram (e.g., following the rules of the FODA notation [Kang et al.
1990]), but it could be graphically represented also in a tree structure (as it is usually found
in the typical left panel in CASE tools), or else in a purely textual form (reports generated
by tools, XMI serialization, etc.): that is, feature models are independent of any graphical
notation. As summarized in [Czarnecki et al. 2006], the essence of a feature model is its
embodiment of a hierarchy and description of variability, rather than its rendering.

We also consider that a feature model does have the properties of a model exposed in
Section 2.2.3. It is a purposeful abstraction of an SPL, it has a clear semantics from which
several kinds of automated analysis and reasoning can be performed (see next section) and
textual or graphical languages (see Section 3.3.2) have been developed to specify feature
models. For all these reasons, we use the term feature model.

Formalism. Four key notions are defined below: feature diagram, feature model, feature
hierarchy and configurations. Throughout this thesis, we will rely on this formalism and
notation. If needs be, we will recap some important notions, typically at the beginning of
each chapter, in a background section. Several formalisms and notations have been pro-
posed in the literature. [Schobbens et al. 2007] survey the large majority of feature model
variants. They show that some variants are expressively complete and thereby equiva-
lent in terms of expressiveness. They give them a formal semantics, thanks to a generic
construction. The formalism we rely on is expressively complete regarding propositional
logics and can be seen as an instance of this generic construction.

Some important details are as follows. First, we consider that the hierarchy of a feature
model is represented as a tree (and not as a direct acyclic graph). In particular, a feature
cannot have two parents and cannot belong to more than one feature group. Second, we
consider only two kinds of feature group (Xor and Or) – we do not consider Mutex-group
(as in [She et al. 2011]) or group cardinality (as in [Riebisch et al. 2002, Schobbens et al.
2007]) that defines a minimum number of features and a maximum of features to choose
from amongst the total number of features in the feature group. Third, a parent feature can
have several feature groups (e.g., two Xor-groups and one Or-group). Fourth, implies and
excludes constraints are distinguished from other constraints. Fifth, we do not distinguish
primitive features from non-primitive features (as in [Schobbens et al. 2007]) or abstract
features from concrete features (as in [Czarnecki and Eisenecker 1999, Thüm et al. 2009]).
Finally, features are uniquely identified by their names.

Definition 1 (Feature Diagram). A feature diagramFD = 〈G, r,EMAND,FXOR,FOR, Impl, Excl〉
is defined as follows:

• G = (F , E) is a rooted tree where F is a finite set of features and E ⊆ F × F is a finite set
of edges (edges represent top-down hierarchical decomposition of features, i.e., parent-child
relations between them) ;
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• r ∈ F is the root feature ;
• EMAND ⊆ E is a set of edges that defines mandatory features with their parents ;
• FXOR ⊆ P(F) × F and FOR ⊆ P(F) × F define feature groups and are sets of pairs of

child features together with its common parent feature. The child features are either exclusive
(Xor-groups) or inclusive (Or-groups) ;

• features that are neither mandatory features nor involved in a feature group are optional
features ;

• a parent feature can have several feature groups but a feature must belong to only one feature
group.

• a set of implies constraints Impl (resp. excludes constraints Excl), each implies constraint
(resp. excludes constraint) being a propositional formula whose form is A ⇒ B (resp. A ⇒
¬B) where A ∈ F and B ∈ F .

Definition 2 (Feature Model). A feature model FM is a tuple 〈FD,ψcst〉 where FD is a feature
diagram and ψcst is a set of cross-tree constraints where each constraint is a propositional formula
over the set of features F (but neither an implies constraint nor an excludes constraint).

Definition 3 (Feature Hierarchy). The feature hierarchy of a feature model FM = 〈FD,ψcst〉
corresponds to the hierarchy of its feature diagram FD. The hierarchy of a feature diagram FD is
characterized by its tree G = (F , E) and its root feature r.

Definition 4 (Configuration Semantics). A configuration of a feature model FM is defined
as a set of selected features. JFMK denotes the set of valid configurations of the feature model
FM and is thus a set of sets of features. A configuration c of FM is defined as a set of selected
features c = {f1, f2, . . . , fm} ⊆ FF M (e.g., see Figure 7.2(b) for the set of valid configurations
characterized by the feature model of Figure 7.2(a)).

The connection between feature model (resp. configuration) and SPL (resp. product)
can now be defined.

Definition 5 (SPL, Feature Model). A software product line SPL is a set of products described
by a feature model FM . The set of features of FM is denoted FF M . Each product of SPL is a
combination of features and corresponds to a valid configuration of FM .

3.1.2 Propositional Feature Models

Figure 3.2(a) depicts a feature model, denoted fm1. This feature model represents a set of
valid configurations, enumerated in Figure 7.2(b), and denoted Jfm1K. The feature model
is encoded as a proposition formula φfm1 (see Figure 7.2(b)). Using this formula, we can
reason about the set of configurations of fm1.

Background on Propositional Logic. In this thesis, we use propositional logic with stan-
dard Boolean connectives (∧, ∨,⇒,⇔ and negation (¬) with their standard meaning. For
a set of Boolean variables, a variable assignment is a function from the variables to 1, 0
(or true, false). A variable assignment is often represented as the set of variables that are
assigned the value 1 (or true), the other variables are implicitly 0 (or false). A model of a
formula φ is such a variable assignment under which φ evaluates to true (a model can be
seen as a solution to the formula).

Example. The formula x ∨ y has the models {x}, {y}, and {x, y}. The assignment ∅,
which assigns false to all variables, is not a model of x ∨ y.
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Optional

Mandatory

Xor-Group

Or-Group

(a) FODA-like representation

φfm1 = W // root
∧W ⇔ P// mandatory
// Or-group
∧ P ⇒ R ∨ S
∧ R⇒ P ∧ S ⇒ P
∧ V ⇒ T // optional
∧ A⇔ T // mandatory
// Xor-group
∧ T ⇒W
∧ U ⇒W
∧ ¬T ∨ ¬U
// constraints
∧ V ⇒ R // implies
∧ ¬U ⇒ ¬S // excludes
(b) corresponding propositional formula

Jfm1K = {
{W,P,R, S, T,A, V },
{W,P, S, T,A},
{W,P,R, T,A},
{W,P,R,U},
{W,P,R, T, V,A},
{W,P,R, S, T,A},
}
(c) corresponding set of configurations

Figure 3.2: feature model, set of configurations and propositional logic encoding

A formula is satisfiable if and only if there is a assignment of the variables for which the
formula evaluates to true (the formula has a model); a formula is unsatisfiable if and only if
it is not satisfiable.

Formula Encoding. In general, the following steps are performed to encode a feature model
as a propositional formula [Batory 2005, Czarnecki and Wąsowski 2007, Benavides et al.
2010]: (1) each feature of the feature model corresponds to a variable of the propositional
formula, (2) each relationship of the model is mapped into one or more small formulas
depending on the type of relationship (Xor- and Or-groups) (3) the resulting formula is
the conjunction of all the resulting formulas of step (2) plus additional propositional con-
straints.

Definition 6 (Feature Model). A feature model can be encoded as a propositional formula, denoted
φ and defined over a set of Boolean variables, where each variable corresponds to a feature (see also
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Figure 3.3: Three logically equivalent feature models with different hierarchies

Figure 3.2).

Configuration Semantics Is Not Enough: Hierarchy Matters. While the configuration se-
mantics is most commonly associated with feature modeling, there exist other meanings
of feature models. For example, Figure 3.3 depicts three feature models with identical
configuration semantics, yet different hierarchies and meanings. In the medical imaging
domain, MRI and CT can be considered as a kind of modality acquisition of a medical
image. Hence, from an ontological perspective, the feature model fmh1 (see Figure 3.3(a))
correctly structures the features MRI and CT that are child-features of the feature Modality
Acquisition. The features MRI and CT are differently organized in fmh2 (see Figure 3.3(b))
and fmh3 (see Figure 3.3(c)). In this specific example, one can consider that there are in-
correctly modeled. We have shown that the configuration semantics is not sufficient to
characterize the semantics of feature models. The hierarchy reflects the meaning of the
features and is another important aspect of feature models [Czarnecki and Wąsowski 2007,
She et al. 2011], especially for the modeler1.

Properties of Feature Models. Feature models have important properties that can be au-
tomatically extracted by automated techniques and reported to an SPL practitioner. In
particular, a feature model may represent no valid configuration (see Definition 7), typi-
cally due to the presence of cross-tree constraints – in this case, the feature model is a void
feature model.

Definition 7 (Void feature model). A feature model is void (or unsatisfiable or invalid or incon-
sistent) if it represents no configuration.

A feature model may have features not present in any valid configuration (see Defini-
tion 8), called dead features [Benavides et al. 2010]. For example, the feature V is dead in
Figure 3.4. Note that all features (including the root) are dead in a void feature model.

Definition 8 (Dead features). A feature f of FM is dead if it cannot be part of any of the valid
configurations of FM . The set of dead features of FM is noted deads(FM) = {f ∈ F | ∀c ∈
JFMK, f /∈ c}

1Though the meaning of edges and feature names in feature models is important for a modeler, this kind of
information is usually not explicitly represented and exploited by reasoning tools.
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Figure 3.4: Properties of feature models: core features and anomalies

Features may also be part of all valid configurations of a feature model (it is the case of
the features W and P in Figure 3.4).

Definition 9 (Core features). A feature f of FM is a core feature if it is part of all valid configura-
tions of FM . The set of core features of FM is noted cores(FM) = {f ∈ F | ∀c ∈ JFMK, f ∈ c}

Feature models may exhibit anomalies in them (i.e., incorrect definitions of relation-
ships that suggests that the set of products described by a feature model may not match
the SPL it describes) [Trinidad et al. 2008a]. Dead features can be considered as anomalies.
Considering fm2 (see Figure 3.4), we can notice that i) though features R and S form an
Or-group, they are mutually exclusive (due to the presence of constraints) ; ii) though the
feature A is an optional feature of its parent feature T, the two features are logically bi-
implied (i.e., whenever the feature T is selected, the feature A must also be selected) and
thereby the feature A should be modeled as a mandatory feature. Generally, these anoma-
lies are regarded as a negative property of a feature model since it can easily decrease
its maintainability or understandability. These anomalies can be automatically detected
and some corrections can be suggested and applied [Trinidad et al. 2008a, Benavides et al.
2010].

Reasoning Operations. The automated analysis of feature models is about extracting
information from feature models using automated mechanisms [Benavides et al. 2010].
Analysing feature models is an error-prone and tedious task, and it is infeasible to do
manually with large-scale feature models. It is an active area of research and is gaining
importance in both practitioners and researchers in the software product line community.
Since the introduction of feature models, the literature has contributed with a number of
operations of analysis, tools, paradigms and algorithms to support the analysis process.

Mannion was the first to identify the use of propositional logic techniques to reason
about properties of a feature model [Mannion 2002]. In [Batory 2005], the relationship
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that exists between feature model, propositional logic and grammar has been established.
Batory also suggests to use logic truth maintenance system (LTMS) to infer some choices
during the configuration process [Batory 2005]. Schobbens et al. have formalized some
operations and their complexity [Schobbens et al. 2007]. Benavides et al. present a struc-
tured literature review of the existing proposals for the automated analysis of feature mod-
els [Benavides et al. 2010]. Example analyses proliferate and include consistency check
or dead feature detections [Marcilio Mendonca 2009], interactive guidance during con-
figuration [Tun et al. 2009, Mendonca and Cowan 2010], or fixing models and configura-
tions [Trinidad et al. 2008a, White et al. 2008, Janota 2010].

It should be noted that most of the reasoning operations (e.g., satisfiability) are difficult
computational problem and are NP-complete [Schobbens et al. 2007].

Algorithms and Automation. Various kinds of automated support have been proposed
and can be classified as follows:

• propositional logic: SAT (for satisfiability) solvers or Binary Decision Diagram (BDD)
take a propositional formula as input and allow one for reasoning about the formula
(validity, models, etc.).

• constraint programming: a constraint satisfaction problem (CSP) consists of a set of
variables, a set of finite domains for those variables and a set of constraints restricting
the values of the variables. A CSP is solved by finding states (values for variables) in
which all constraints are satisfied. In contrast to propositional formulas, CSP solvers
can deal not only with binary values (true or false) but also with numerical values
such as integers or intervals.

• description logic (DL): DLs are a family of knowledge representation languages en-
abling the reasoning within knowledge domains by using specific logic reasoners.
A problem described in terms of description logic is usually composed by a set of
concepts (i.e., classes), a set of roles (e.g., properties or relationships) and set of in-
dividuals (i.e., instances). A description logic reasoner is a software package that
takes as input a problem described in DL and provides facilities for consistency and
correctness checking and other reasoning operations.

• and other contributions not classified in the former groups proposing ad hoc solu-
tions, algorithms or paradigms.

The majority of existing techniques rely on propositional logic tools to reason about
propositional feature models (e.g., see [Czarnecki and Wąsowski 2007, Mendonca et al.
2008, Thüm et al. 2009, Marcilio Mendonca 2009, Janota 2010]). Benavides et al. report that
CSP solvers or DL solvers may also be used, but mostly for other extensions of feature
models (e.g., feature attributes) [Benavides et al. 2010]. In [Janota and Kiniry 2007], The
use of a satisfiability modulo theories (SMT) solver is suggested.

Non propositional feature models. Some extensions of feature models have been proposed
(e.g., feature attributes [Benavides et al. 2005], cardinality-based feature models [Czarnecki
et al. 2005b]). Very early, Kang et al. use an example of attribute in [Kang et al. 1990] while
Czarnecki et al. coin the term "feature attribute" in [Czarnecki et al. 2002]. However, as
reported in [Benavides et al. 2010], the vast majority of research in feature modeling has
focused on "basic" [Czarnecki et al. 2006, Czarnecki and Wąsowski 2007], propositional
feature models. In this thesis, we focus exclusively on this kind of formalism. In the
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reminder of the document, the term feature model implicitly refers to propositional feature
model.

3.2 ON THE USE OF FEATURE MODELS

In SPL engineering, feature models have been employed in a variety of contexts, at differ-
ent levels of abstractions and for different purposes. It can be somewhat explained by the
different notions associated to the notions of features and variability (see Section 3.2.1). In
Section 3.2.2, we survey2 relevant work, for which the use of feature models is the primary
interest.

3.2.1 Feature and Variability

Feature models aim at describing the variability of an SPL in terms of features: Variability
and features though are broad concepts for which a large number of interpretations exists.
It has naturally an impact on how feature models are used.

What is in a Feature? Due to the diversity of software engineering research, there are
several definitions of a feature [Classen et al. 2008, Apel and Kästner 2009], for example
(ordered from abstract to technical):

• [Kang et al. 1990]: "a prominent or distinctive user-visible aspect, quality, or charac-
teristic of a software system or systems"

• [Kang et al. 1998]: "a distinctively identifiable functional abstraction that must be
implemented, tested, delivered, and maintained"

• [Czarnecki and Eisenecker 2000]: "a distinguishable characteristic of a concept (e.g.,
system, component, and so on) that is relevant to some stakeholder of the concept"

• [Bosch 2000]: "a logical unit of behavior specified by a set of functional and non-
functional requirements"

• [Chen et al. 2005]: "a product characteristic from user or customer views, which es-
sentially consists of a cohesive set of individual requirements"

• [Batory et al. 2003]: "a product characteristic that is used in distinguishing programs
within a family of related programs"

• [Classen et al. 2008]: "a triplet, f = (R,W,S), where R represents the requirements
the feature satisfies, W the assumptions the feature takes about its environment and
S its specification"

• [Zave and Jackson 1997]: "an optional or incremental unit of functionality"
• [Batory 2005]: "an increment of program functionality"
• [Apel and Kästner 2009]: "a structure that extends and modifies the structure of a

given program in order to satisfy a stakeholder’s requirement, to implement and
encapsulate a design decision, and to offer a configuration option"

On Variability: Categories, Levels, Classification. Variability is a cross-cutting concern of
an SPL engineering process and appears in every software development phase. During
variability identification, for instance, the origin of variabilities may be identified from dif-
ferent perspectives. Bachmann and Bass propose in [Bachmann and Bass 2001] to classify
variabilities into categories: Variability in function (a particular function may exist in some

2We review and compare these works in Chapter 4.
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products and not in others); Variability in data (a particular data structure may be used in
one product but not in another); Variability in control flow means (a particular interaction
may occur in some products and not in others); Variability in technology (OS, hardware,
user interface, etc. may vary from one product to another) ; Variability in product qual-
ity goals means that goals (qualitative dimensions like performance or security may be
unique to one product), etc. [Svahnberg et al. 2005] have defined five levels of variability
(SPL, product, component, sub-component and code level) where different variability de-
sign issues appear . Another classification, based on the distinction between essential and
technical variability, has been proposed in [Halmans and Pohl 2003]. Essential variability
refers to the customer’s point of view (and is also called external variability in [Pohl et al.
2005] or product line variability in [Metzger et al. 2007]). Technical variability (also called
internal variability in [Pohl et al. 2005] and software variability in [Metzger et al. 2007])
refers to the SPL engineers point of view who is primarily interested in implementation
details (i.e., variation points, variants and binding times to implement variability).

Impact on Feature Modeling. The plethora of feature and variability definitions suggests
that feature models can be used at different stages of the SPL development, from high-
level requirements to code implementation. From an early stage (e.g., requirements elici-
tation) to components and platform modeling, feature models can be applied to any kind
of artefacts (code, documentation, models) and at any level of abstraction. Feature mod-
els can play a central role in managing variability and product derivation of SPLs (e.g.,
see [Czarnecki and Antkiewicz 2005, Ziadi and Jézéquel 2006, Sanchez et al. 2008, Voelter
and Groher 2007, Heidenreich et al. 2010]). In this thesis, feature models are considered
from a general perspective in that feature models are not restricted to a specific develop-
ment phase. As a result, a feature model can just as well describe a family of software
programs, a family of requirements or a family of models.

3.2.2 Feature Models in a Multiple World

In [Kang et al. 1998], the authors propose several categories of features, organised into a
hierarchy. Feature models in the capabilities layer (e.g., functionality of the end user), in
the operating environments layer (e.g., the attributes of the environment), in the domain
technologies layer and in the implementation technologies layer are combined through
composed-of, generalisation/specialisation and implemented-by relationships, modeled
as propositional constraints. Metzger et al. distinguish software variability (hidden
to customers and internal to an SPL) from product line (PL) variability (visible to cus-
tomers) [Metzger et al. 2007]. They separate the two kinds of variability description in two
distinct variability models: a feature model and an orthogonal variability model (OVM).
They describe a bridge between the formalism of feature model and the formalism of
OVM. Though they slightly differ, their semantics remain the same: documenting the valid
combination of features (or variation points) in an SPL. They use automated reasoning
techniques to determine interesting properties between the software variability and the
PL variability. For instance, a crucial check mentioned is the property of realizability: for
each configuration in the software part should correspond a product in the product line of-
fered to customers. In [Tun et al. 2009], several feature models are used to separate feature
descriptions related to requirements, problem world context and software specifications.
They also consider the modeling of qualitative attributes in these feature models.
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Van der Storm considered not only variability at the level of one software product, but
also each variable component as an entry-point for a certain software product (obtained
through component composition) [van der Storm 2004]. Hartmann et al. dealt with mul-
tiple SPLs and identified several compositional issues in the context of software supply
chains [Hartmann et al. 2009]. They aim to integrating several highly-variable components
provided by different suppliers. Reiser and Weber proposed to use multi-level feature trees
consisting of a tree of feature models in which the parent model serves as a reference fea-
ture model for its children [Reiser and Weber 2007]. Their purpose is mostly to cope with
large diagrams and large-scale organizations.

There have been several attempts to relating features and contextual factors affecting
feature selection. Hartmann and Trew proposed a context variability model which con-
strains a feature model by describing how contextual variations (e.g., different geographic
regions) affect selection of feature variations [Hartmann and Trew 2008]. Tun et al. used
contextual variations as links between requirement variations and feature variations [Tun
et al. 2009]. In summary, both approaches model contextual variations that affect feature
selection as a separate contextual feature model and relate the contextual feature model to
the application feature model through feature dependencies (e.g., requires and excludes).
Lee and Kang argued that "Although feature dependencies between the contextual feature model
and the application feature model affect selection of features in the application feature model, they
are not the only one that affects feature selection. Rather than one contextual feature affecting selec-
tion of application features, a group of contextual features determines product goals and attributes,
which in turn affects selection of application features” [Lee and Kang 2010].

Segura et al., Alves et al. use feature models to evolve an SPL (e.g., refactoring of an
SPL). They provide catalog rules to evolve feature models and describe some properties of
the catalog [Segura et al. 2008, Alves et al. 2006]. Schwanninger et al. report an industrial
experience in which several feature models are used throughout the development pro-
cess [Schwanninger et al. 2009]. Zaid et al. propose an approach for modularizing feature
models so that they can be reused in another context [Zaid et al. 2010; 2011].

Czarnecki et al. propose a staged configuration approach where feature models are step-
wise specialized and instantiated according to the stakeholder interests at each develop-
ment stage [Czarnecki et al. 2005b]. Specialization and configuration are distinguished:
specialization is defined as the process in which variabilities in feature models are removed
(i.e., a specialized feature model has fewer variabilities than its parent feature model, a
fully specialized feature model has no variability while a configuration is an instantiation
of a feature model). The concept of multi-level staged configuration is also introduced,
referring to a sequential process in which a feature model is configured and specialized
by stakeholders in the development stages. Hubaux et al. propose a formal approach to
multi-stage configuration [Hubaux et al. 2009]. They notably propose the formalism of fea-
ture configuration workflow in order to configure a large feature models in different steps,
possibly by different stakeholders.

Dhungana et al. discuss the challenges of structuring the modelling space for software
product lines (solution structure, multiple SPLs, asset types, organisational structure, and
market needs) [Dhungana et al. 2010]. They argue that maintaining a single feature model
for the entire system is not feasible and proceed to suggest strategies for feature modelling
from various perspectives. They also present some examples of how these strategies can
be applied, supported by existing tools.
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3.3 TOOL AND LANGUAGE SUPPORT

3.3.1 Feature Modeling Tools

Tools supporting the creation of feature models have emerged since 2004. Most of the
tools that support the creation of feature models usually also provide support to the con-
figuration process. Feature Modeling Plug-In (FMP) [Czarnecki et al. 2004] has been the
starting point of such tool. FMP provides tree views for creating feature models, config-
urations, and partial configurations in the process of staged configuration. The Software
Product Lines Online Tools (SPLOT) is a web-based tool providing a feature model editor
as a tree view, a configuration editor with decision propagation, automated analysis on
feature models, and example feature models [Mendonca et al. 2009a;b]. FAMA is a Java
framework that focuses on the comparison of different solvers for the automated analysis
of feature models [FaMa 2008, Trinidad et al. 2008b]. Two commercial tools integrate fea-
ture modeling and the configuration process pure::variants [pure::variants 2006, Beuche
2008] and Gears [BigLever – Gears 2006] and provide extensions to multiple IDEs such
as Eclipse and Netbeans. FeatureIDE is an Eclipse-based framework to support feature-
oriented software development [Kästner et al. 2009a;b]. The main focus of FeatureIDE is
to cover the whole development process and to integrate tools for the implementation of
SPLs in an integrated development environment. The goal is to ease the development of
tool support for new languages and concepts. FeatureIDE provides advanced support for
feature modeling, including graphical editors to specify a feature model or configure a
feature model and specific graphical views to reason about feature model edits.

3.3.2 Feature Modeling Notation

In the literature, graphical feature model notations based on FODA [Kang et al. 1990] are
by far the most widely used. FeatuRSEB [Griss et al. 1998], FORM [Kang et al. 1998] or the
graphical notation proposed in [Czarnecki and Eisenecker 2000] are only slightly different
from the FODA notation (e.g., boxes are added around feature names or filled circles are
used to represent mandatory features).

In addition, a number of textual feature model languages were also proposed in the
literature. The first textual language was FDL [Deursen and Klint 2002]. Batory proposed
the GUIDSL syntax, in which the feature model is represented by a grammar [Batory 2005].
The GUIDSL syntax is used as a file format of the feature-oriented programming tools
AHEAD [Batory et al. 2004] and FeatureIDE [Kästner et al. 2009a;b]. TVL is a text-based
(as opposed to diagrammatic) language for feature models with a C-like syntax [Boucher
et al. 2010, Classen et al. 2010a]. The goal of the language is to be scalable, by being concise
and by offering mechanisms for modularity, and to be comprehensive so as to cover most
of the feature model dialects proposed in the literature. TVL also supports enumerates and
feature attributes.

The language Clafer integrates feature modeling into class modeling and thereby can
also be used to specify feature models [Bąk et al. 2011].

3.4 SUMMARY AND CONTRIBUTION CHOICES

Feature models are a fundamental formalism in SPL engineering. These models hierar-
chically structure features and compactly define the set of legal combinations of features,
where each combination corresponds to a product in an SPL. Our work focuses on an
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approach that puts feature models at the center of SPL engineering. In this chapter, we
have introduced the essence and the semantics of feature models. Though extended for-
malisms have been proposed (e.g., feature attributes), we chose to focus on propositional
(also called basic) feature models. We have highlighted that a number of (automated)
techniques have been developed to facilitate their analysis and manipulation. We have
also surveyed several works centered on the use of feature models. They are now used in
a wider scope than originally planned in 1990 and employed in a variety of contexts, at
different levels of abstractions and for different purposes. The primary focus of the thesis
is to investigate further in this research direction.





Four

Multiple Feature Models: Example and
Requirements

This chapter shares material with the MICCAI-Grid paper "Issues in Managing Variability
of Medical Imaging Grid Services" [Acher et al. 2008a] and the SOAPL’08 paper "Imag-
ing Services on the Grid as a Product Line: Requirements and Architecture” [Acher et al.
2008b].

In this chapter, we describe an example in which several feature models, possibly inter-
related, are intensively used to model the variability of a software system. The example
is about variability management in scientific workflows and is representative of the kinds
of problems that may occur when multiple variability sources have to be managed. It is
an excerpt of a larger case study in the medical imaging domain where the overall objec-
tive is to develop model-based software product line techniques that facilitate the reuse of
legacy services during the design of scientific workflows (see Section 4.1 for the example
description). From this example, we identify different issues that have not been properly
addressed by existing related work (see Section 4.2). Finally, we give an overview of the
approach and the contributions of the thesis (see Section 4.3). The example and underly-
ing issues will be revisited throughout the thesis document to illustrate and evaluate the
contributions of the thesis (mainly in Chapter 6 and Chapter 10).

4.1 VARIABILITY IN SCIENTIFIC WORKFLOWS

Scientific workflows are increasingly used for the integration of legacy tools and algorithms
to build large and complex applications such as scientific data analysis pipelines or com-
putational science experiments. Despite the growing interest observed in scientific work-
flow technologies in recent years, workflow design remains a difficult, tedious, and often
error-prone process which slows down the adoption of scientific workflows [Gil et al. 2007,
McPhillips et al. 2009]. In particular, although catalogs of domain-specific data processing
services are common, the low-level interface representations used (e.g., Web Services) usu-
ally only provide syntactical information suited to check the technical consistency of indi-
vidual services. There is absolutely no guarantee regarding the consistency of the whole
process composed, nor its validity from an applicative point of view. The use of composi-
tional software product lines techniques to gain potential advantages in terms of flexibility
and reuse (and thus time, effort and cost) may alleviate these problems.

Our work is illustrated through the medical imaging area, which is typical of the usage
of scientific workflows executed over compute-intensive distributed infrastructures such
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as grids. In this domain, grids help in building patient-specific models and in reducing
computation time for meeting time constraints from clinical practice. The rest of this sec-
tion introduces our example and identifies its sources of variability to determine associated
requirements.

4.1.1 Medical Imaging Workflows

In the medical image analysis area, distributed computing capabilities are used for many
purposes, ranging from validation and optimization processes of specific algorithms to
overall reduction of computing time. Besides, image analysis pipelines are scientific, data-
driven workflows which are undergoing homogenization nowadays, strongly motivated
by the need for mutualizing software development and easily comparing results. This
homogenization is conducted through the usage of common data formats and means to
reuse algorithms.

In order to facilitate it, Service-Oriented Architectures (SOAs) [Foster et al. 2002] are
increasingly used and aim at i) producing reusable self-contained, distributed imaging ser-
vices, decoupled and abstracted from technical grid platforms ; ii) providing standardized
interfaces for invoking wrapped application codes as well as information on exchange pro-
tocols and iii) composing these atomic services to describe processing pipelines as complex
workflows. Using SOAs, medical experts essentially compose different kinds of processing
on images, each algorithm being provided by a service.

Medical imaging workflow example. We use as an illustration an existing service-oriented
workflow designed to conduct experiments on Alzheimer’s disease [Lorenzi et al. 2010].
This disease is a neurodegenerative pathology which can be characterized by an atrophy of
the brain. The workflow illustrated in Figure 4.1 is based on several image processing ac-
tivities aimed at tracking the evolution of Alzheimer disease through a longitudinal study.
The disease follow up consists in comparing several MRIs from the same patient acquired
over time, to detect changes in the volume of the brain and compute a brain tissue atrophy
coefficient. In order to be compared in the last steps of the workflow, source MRIs first
need to be homogenized both in terms of intensity biases and space alignment. It must
be noted that, as in many similar scientific workflows, the complexity lies in the correct
pre-processing of data, which is generally frustrating for the scientist end-users.

In Figure 4.1, the blue boxes at the top represent the input images: the Image sequence
box represents MRIs acquired at a given time (T0+6 months and T0+12 months), the Ref-
erence image represents the MRI acquisition at T0, considered as the patient’s reference.
This configuration of the workflow will lead to two invocations, giving two estimations of
brain atrophy, at time T0+6 and T0+12. The first image processing activity, Bias correction
is a general restoration procedure which involves removing voxel inhomogeneities in the
magnetic field of the MRI equipment, used to improve the result of image post-processing
algorithms. Then an Affine registration process is performed in which a spatial alignment
is estimated so that the MRI considered is translated, reoriented and scaled to be super-
imposed on the patient’s reference MRI. The next step Longitudinal intensity correction is
another intensity homogenization procedure that normalizes intensities between the dif-
ferent images acquired over time. At the same time, the right branch of the workflow aims
at identifying brain tissues (grey and white matter) through the Brain extraction and Tissue
segmentation activities to finally create a mask (Mask calculation) delineating grey and white
matter of the patient’s brain at T0. Finally, the comparison of MRIs starts by estimating the
deformation field, which corresponds to the Non-linear registration activity, between the
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Figure 4.1: From workflow design to selection of services.

reference and the “moving” MRIs. The last step consists in applying the deformation field
to the mask of the brain tissues in order to estimate the changes in the volume of brain
tissues, and estimate, as the final result of the workflow, a potential atrophy.

4.1.2 Sources of Variability

We analyze here the different sources of variability that are present in the workflow of
Figure 4.1.

The pre-processing involved in this workflow are based on three typical categories of
image processing activities: Restoration, Registration and Segmentation. By category, we
mean a class of activities that are grouped as perceptually similar although they may be
discriminable from one another. For instance, the two activities Bias correction and Lon-
gitudinal intensity correction realize the same coarse-grained activity, Restoration, but their
fine-grained functionality varies because removing magnetic inhomogeneities is different
than normalizing intensities from two different MR images. Another example comes from
the Registration activities in which the same kind of functional variability can be observed
as there are significant differences between linear and non-rigid transformations. More
generally, several Restoration services (algorithms) have been developed and are as many
candidates to realize a given functionality. In addition, service providers offer different im-
plementations of an algorithm and selection of services are based on the different values
of parameters. Hence services can be customized to meet individual needs, for example,
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a workflow designer has different kinds of preferences for a service or need a specific be-
haviour from services.

At workflow runtime, end-users must cope with non functional concerns such as con-
straints related to the computing infrastructure or restricted access control. For example,
to operationalize the Brain extraction activity, one may choose the BET tool from the FSL
toolbox because it is fast at removing non-brain tissues and can be relocated to the end-
user desktop. But if the accuracy of the segmentation is preferred to its computation time,
another processing tool might be chosen with different constraints on the infrastructure.
Using BET also introduces a deployment constraint as it depends on the full installation of
another toolbox (FSL) and needs appropriate environment configuration.

More generally, for each activity of the workflow, numerous existing services are avail-
able on the grid and vary from different perspectives: the support of image formats (
DICOM, Nifti, Analyze, etc.) and modality acquisition ( MR, CT, PET, etc.), the support
of network protocols, the algorithm method used to process an image, anatomical struc-
tures for which services are supposed to efficiently perform ( Brain, Kidney, Breast, etc.),
quality of service (QoS) provided in different contexts, etc. It must be noted that not only
imaging but nearly all scientific services have a large number of input ports, parameters,
data specificities, and dependencies at all levels (functional, non-functional and deploy-
ment related). The overall issue for scientific workflow users is thus to deal with services
and their dependencies in their workflows while addressing a large amount of concerns.
In our medical imaging illustration, from the workflow design time to its run time, both
domain-specific and technical knowledge are needed to resolve different forms of variabil-
ity. This is typically accomplished by manually setting, among others, the choice of tools
and the choice in their configuration. This type of manual variability management requires
a considerable amount of time and effort, and is generally a tedious and error-prone task.

4.1.3 Challenges in Scientific Workflows Design

There are several issues when designing scientific workflows. Following an SPL approach,
our work addresses the following specific challenges. The first challenge is to capture com-
monalities and variabilities across a family of services in reusable parameterized services,
for example, identifying and organizing similar and recurrent imaging tasks such as regis-
trations and corrections. The second challenge is related to providing support for tailoring
and composing services to realize consistent workflows.

There are two categories of users for the NeuroLOG platform: (i) image analysis spe-
cialist create and deploy image analysis tools that are of interest for neuroscientists; and (ii)
neuroscientists design data analysis experiments by composing such tools within special-
ized workflows. Rather than providing services and hoping that opportunities for reuse
will arise during the design of a workflow, a proactive strategy is to plan which character-
istics or features of a service are likely to be systematically reused. The ability to efficiently
create many variations of a service and capitalize on its commonalities can improve its
composability and increase the extent to which service logic is sufficiently generic so that
it can be effectively reused. Currently, the difficulty of provisioning and composing pa-
rameterized services stems from the lack of mechanisms for managing variabilities within
and across services.

The goal of the SPL approach promoted in this thesis is to manage not only the variabil-
ity of the services but also the variability of the resulting composed services. For structur-
ing and managing variability information across a large amount of services, we identified
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the following requirements, emerging from the needs of both image analysts and neuro-
scientists:

• Mechanisms that enable service providers (image analysts) to capture the common-
alities and variabilities in parameterized (imaging) services ;

• Assistance to the neuroscientists in selecting the appropriate service from among
sets of existing services: They may want to search services matching several criteria
to determine whether at least one service can fulfill a specific feature or combination
of features ;

• Ensuring that services are consistently composed in the resulting workflow. For ex-
ample, connected services should inter-operate while exchanging medical images
and support compatible formats. A sound formal basis together with tools are
needed to support rigorous reasoning on a large number of services for ensuring
that these properties are preserved ;

• Evolving services as the variability of services can evolve during time. Similarly, new
services from new suppliers and scientists can be proposed. Consequently, there is a
need to consistently maintain the set of existing services and favor the integration of
new services.

4.2 MANAGING MULTIPLE FEATURE MODELS

We rely on feature models to describe the variability of a service. Several kinds of artifacts
(e.g., XML configurations files, source code, tabular data) may provide information about
the variability of services. As a starting point of our approach, we assume that the vari-
ability of services has been explicitly documented in one or more than one feature model,
either manually or automatically.

4.2.1 Why Multiple Feature Models?

Multiple concerns. Medical imaging services exhibit multiple sources of variation. The
variability may refer to the functionality (e.g., particular function may only exist in some
services or can be highly parameterized), the grid deployment technology (e.g., operat-
ing system, hardware, libraries required, dependency on middleware), the specificities of
data (e.g., medical image format), to non functional property (like security, performance
or adaptability), etc. In other words, variability affects different concerns (medical image
support, algorithm method, grid deployment, network protocol, etc.) of a medical imag-
ing service. As multiple sources of variation are present within a service, several feature
models are used where each feature model focuses on a specific concern of a service.

Multiple services. The management of variability within individual services that constitue
the scientific workflow is a first step but is not sufficient. In the same way multiple services
have been developed and can be potentially reused in different workflows, there exists
multiple feature models that can be exploited by a workflow designer.

Multiple suppliers. In SOA, services are published by a service provider (we call it supplier)
and registered into a service directory. Several suppliers (e.g., from different companies
or research labs) usually exist and offer different ready to use solutions to a workflow
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Figure 4.2: Medical Imaging Service: Variability and Concerns

designer. As suppliers document the variability of their own services, multiple feature
models exist.

We coin the term multiple feature models to characterize a set of feature models, possibly
inter-related, that are combined together to model the variability of a system. The use of
multiple feature models can be explained by two phenomena. Firstly, the feature models
may be originally separated: It is the case when you describe the variability of services
that are by nature modular entities. It is also the case when independent suppliers describe
the variability of their different products. Secondly, it can be the intention of an SPL prac-
titioner to modularize the variability description of the system into different criteria (or
concerns). It is the case when describing the variability of service’s concerns. Here, an
original, typically large feature model is decomposed into smaller and separated feature
models.

With feature models being related in a variety of ways and handled by several suppli-
ers, managing them with a large number of features is intuitively a problem of Separation of
Concerns (SoC). The sought benefits are indeed similar to the ones of the software engineer-
ing discipline (e.g., reduced complexity, improved reusability and simpler evolution). On
the one hand, one needs to compose feature models that have originally or intentionally
been separated. On the other hand, one needs to separate concerns and decompose (large)
feature models. In both cases, the principle of SoC can be an effective way to manage the
size and complexity of multiple feature models. As argued by [Tarr et al. 1999] in the ab-
stract of their influential paper "N Degrees of Separation: Multi-Dimensional Separation
of Concerns" (ICSE’99)

"Done well, separation of concerns (SoC) can provide many software engineering
benefits, including reduced complexity, improved reusability, and simpler evolution.
The choice of boundaries for separate concerns depends on both requirements on the
system and on the kind(s) of decomposition and composition a given formalism sup-
ports."
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Figure 4.3: Managing Multiple Feature Models: An Example

4.2.2 Requirements

In this specific example, we have shown that multiple concerns, services and suppliers
with their variability descriptions have to be managed and therefore why multiple feature
models are needed. We think the example is representative of software systems that need
to use multiple feature models when dealing with their variabilities. Other examples in
the literature corroborate this increasing need (see Section 3.2.2 or Table 4.1 that provides
an inventory of possible approaches).

More specifically, we have identified some important issues when dealing with multi-
ple feature models:
consistency checking of multiple feature models: In the example (see green arrows in

Figure 4.3), we have to deal with the variability within and across services. Firstly,
within services, there are complex relationships between services’ concerns (e.g., an
algorithm method may require the use of a specific medical image format). Sec-
ondly, across services, interactions between services (e.g., a feature of one service
may exclude another feature of another service) have to be managed when services
are combined to form workflows.

grouping feature models: For each category of activity to be performed in the workflow
(e.g., segmentation, registration), there are several candidate services provided by
different suppliers (see right part of Figure 4.3). It is time-consuming and labour
intensive for a workflow designer to explore the list of services and their features.
Grouping similar services (e.g., segmentation services) helps in finding the relevant
service and in maintaing the service directory ;

updating feature models: When concerns are inter-related within a service by constraints
(see green arrows in Figure 4.3 or constraints in Figure 4.2), some features of some
concerns may become dead or mandatory. Hence for each concern of service we
need to update the variability information so that each feature model is a correct
representation of the set of configurations ;
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reasoning locally about some specific parts of the feature models: In the example, when
a service processes a medical image and transmits it to another service, the workflow
designer should ensure that the involved services are compatible (e.g., see Tissue Seg-
mentation and Mask Calculation in Figure 4.3). We thus need to reason about some
specific parts of the two services (e.g., on the features related to medical image prop-
erties).

multiple perspectives support: In the example, the deployment of a medical imaging ser-
vice is subject to various expertises (grid computing, medical imaging, etc.). Ideally,
the different experts should focus on a specific dimension (e.g., security) and the
details that are out of the scope of their expertise should be hidden. Dedicated de-
composition facilities should be applied to feature models (see Figure 4.2) ;

multi-stage and multi-step process: the design of a scientific workflow is usually not real-
ized in one step or by an unique stakeholder. For example, the specific requirements
of an application are obtained by configuring the feature model, i.e., by gradually
removing the variability until only those features that are part of the final product
remain. At each step of the process, we should be able to reiterate the reasoning
tasks previously mentioned (consistency checking of FMs, update of FMs, etc).

4.2.3 Analysis of the State-of-the-art

We survey here some existing and relevant approaches for which the use of multiple fea-
ture models has been identified (see Section 3.2.2 for other works). For each approach, we
focus on:

• the general motivation of the work and why there is not only one feature model used
but rather several feature models ;

• the separation of concerns mechanisms developed, if any, that include composition
and decomposition mechanisms ;

• the language and tool support, if any.
Table 4.1 summarizes the description of approaches. This survey shows that the use of
several feature models has a growing interest.

Different forms of variability (PL, internal, external, software, contextual variability,
layers) are usually considered in the approaches. There is a tendency to expand the scope
of feature models: in addition to describing variability in the design, a need for describ-
ing the variability in the wider system context has been recognised by feature modeling
approaches. Tun and Heymans made a similar observation by surveying how some ap-
proaches deal with concerns and their separation in feature model languages [Tun and
Heymans 2009].

The need to model several concerns can explain, in part, the phenomenon of increas-
ing size and complexity of feature models. Until now, researchers assume that very large
feature models exist – but those feature models are not publicly available. For example,
Trujillo et al. claim that the automotive industry has feature models with up to ten thou-
sand features [Trujillo et al. 2006]; Kästner reports some personal communications with
industrial partners that mention the existence of large feature models (from 500 features to
several thousands of features) [Kästner 2010]; Steger et al. report that Bosch’s product line
of engine control software has over 1000 features [Steger et al. 2004]; Refstrup that Owen
product line has about 2000 features [Refstrup 2009]. Recently, automated extraction of
feature models from large implemented software systems have produced feature models
with thousands of features [Berger et al. 2010, She et al. 2011].
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Previous work has pointed out that dealing with large, monolithic feature models is
problematic. In particular, feature model maintenance [Hartmann and Trew 2008, Reiser
and Weber 2007] or evolution [Alves et al. 2006, Thüm et al. 2009, Segura et al. 2008, Bot-
terweck et al. 2010] is a difficult process.

As in our running example, an appealing approach is rather to decompose large feature
models and use multiple feature models during the SPL development. It should allow dif-
ferent stakeholders or software suppliers, at different stages of the software development,
to focus on their expertise and integrate their specific concerns [Czarnecki et al. 2005b,
Reiser and Weber 2007, Hubaux et al. 2009; 2010b].

In most of the approaches, the separation of feature models, if any, is rather conceptual
and there is no clear support. Some operations are suggested but not realized so that only
a few work propose automated reasoning support. In case languages and tool support
are mentioned, the solutions are rather ad-hoc. For example, feature models are separated
from a conceptual point of view but in practice they are manually combined to form a
global feature model [Kang et al. 1998, Hartmann and Trew 2008, Hartmann et al. 2009].

Some works mention the need to integrate feature models that come from different
suppliers [Hartmann et al. 2009, Bosch 2009] and are concerned with stakeholders and
organisational structures [Reiser and Weber 2007]. A few works suggest some composition
mechanisms, but do not give a proper semantics or leave it as future work [Czarnecki et al.
2005b, Hartmann and Trew 2008]. In particular, there is inadequate support for merging
feature models.

Although the feature modeling tool support has a rich history, it is somewhat frag-
mented. There is no integrated solution that supports both composition and decomposi-
tion mechanisms. To the best of our knowledge, existing tools have focused on supporting
activities for only one feature model and have not been explicitly developed to support the
management of several feature models.

A study of the literature about automated reasoning about feature models demon-
strates that providing automated support for composing and decomposing feature models
still remains an open challenge [Alves et al. 2006, Segura et al. 2008, Benavides et al. 2010].

Another observation is that existing approaches either focus on composition or decom-
position, but do not try to combine the two operations.

4.3 REQUIREMENTS SUMMARY AND OVERVIEW OF THE CONTRIBUTIONS

In this chapter, we have shown that feature models are now multiple in SPL engineering.
An appropriate support for managing multiple feature models is more and more needed:
An example from the medical imaging domain and the analysis of the state-of-the-art sup-
port our claims.

4.3.1 Requirements Summary

Central to the requirements described in Section 4.2.2 is i) a comprehensive support for
separation of concerns and ii) automated reasoning techniques.

Separation of Concerns (SoC). By SoC, we mean composition and decomposition mecha-
nisms dedicated to the formalism of feature models.

Composing feature models is important to ensure the consistency of inter-related feature
models, to group and evolve a set of similar services or to update inter-related feature mod-
els. Decomposing feature models is important to reason about local properties of a feature
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Work Motivation Composition Decomposition Support
[Kang et al. 1998] layers FMs are con-

ceptually
separated and
interrelated by
constraints

No not mentioned

[Czarnecki et al. 2005b] Multi-staged
configuration,
Suppliers

merge and join
(informally
described)

fork (in-
formally
described)

No

[Pohl et al. 2005] external vari-
ability vs in-
ternal variabil-
ity

no clear mech-
anism

No A tool for
OVM dia-
gramming

[Metzger et al. 2007] PL variability
vs software
variability

an algorithm
is described
to construct a
global FM

No SAT-based
reasoning
techniques

[Tun et al. 2009] Variability in
requirements,
problem
world and
specification

similarly as
in [Metzger
et al. 2007]

No pure::variants

[Hartmann and Trew
2008]

Contextual
and product
variability

an FM, com-
bination of
the two FMs,
is manually
build

No pure::variants

[Hartmann et al. 2009] Suppliers algorithm to
inter-relate
FMs

No pure::variants

[Reiser and Weber 2006;
2007]

Suppliers Multi-level
feature trees

No Eclipse-based
prototype tool

[Hubaux et al. 2009] feature-based
configuration

inconsistency
management

No YAWL, SPLOT

[Hubaux et al. 2010b;a] Multiple per-
spectives,
feature-based
configuration

No Views extrac-
tion

XPath, SPLOT

[Weston et al. 2009] Elaboration of
FMs from nat-
ural language
requirements

incremental
adding of
features

feature clus-
tering

ARBORCRAFT

[Lee and Kang 2010] Contextual
variability

FMs are
related by
constraints

No No

[Grünbacher et al. 2009,
Dhungana et al. 2010]

solution struc-
ture, multiple
SPLs, asset
types

Variation
points detec-
tion, model
fragments
creation

DOPLER tool
suite

[Zaid et al. 2010; 2011] Multiple per-
spectives,
reusability of
FMs

Extension of
FM formalism

No No

Table 4.1: Multiple Feature Models (FMs) in the state-of-the-art: motivation, composition
and decomposition mechanisms, tool and language support
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model or to support multiple perspectives. The two mechanisms are equally important
and complementary. For example, for updating the different feature models within a ser-
vice (see Figure 4.3), we need to compose the feature models (to reason globally about the
variability) and decompose the feature model (to retrieve the initial decomposition into
different concerns).

Automated reasoning techniques. For all the management activities identified in this chap-
ter, a manual intervention of the workflow designer or different experts is both error-prone,
labour-intensive and time-consuming. In practice, there can be hundreds of features whose
legal combinations are governed by many and often complex rules. This complexity has
already been observed on a scale of one feature model. It becomes even more complex on
a scale of multiple feature models. It is thus of crucial importance to be able to automate the
decision making process as much as possible. Another important aspect is the ability of
techniques to reason about feature models, for example, to infer choices when configuring
some part of a workflow.

4.3.2 Overview of the Contributions

The analysis of the state-of-the-art reveals that there is i) no comprehensive solution for
composing and decomposing feature models and ii) an inadequate support for assisting
SPL practitioners when managing multiple feature models.

The contributions of the thesis aim at providing solutions to these problems. It can be
summarized in three main points:

• a set of composition and decomposition operators to support SoC in feature model-
ing (see Part II). The operators are formally defined, fully automated, guaranteeing
properties in terms of sets of configurations and can be combined together or with
other operators, for example, to realize complex reasoning tasks ;

• a domain-specific, textual language, FAMILIAR, that provides an operational solution
for using the different operators and managing multiple feature models on a large
scale (see Part III);

• various applications of the operators and FAMILIAR (see Part IV) in different domains
(medical imaging, video surveillance) and for different purposes (scientific workflow
design, variability modeling from requirements to runtime, reverse engineering). In
particular, we revisit the example described in the chapter.





Part II

Applying Separation of Concerns to Feature
Modeling
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To suport separation of concerns in feature modeling, we describe the design and the
semantics of operators to compose and to decompose feature models. We show how the
operators can be used to manage and reason about multiple feature models.

In Chapter 5, we present the different composition mechanisms (insert, aggregate,
merge).

In Chapter 6, we focus on the merging operators that produce compact feature models
from a set of existing feature models and thus ease their management and analysis.

In Chapter 7, we present a slicing technique to decompose feature models that, com-
bined with other composition/reasoning operators, brings new capabilities to SPL prac-
titioners (update and extraction of FM views, reconciliation of FMs and reasoning about
different kinds of variability, etc.).





Five

Composing Feature Models

This chapter shares material with the SLE’09 paper "Composing Feature Models” [Acher
et al. 2009b] and the ECMFA’10 paper "Comparing Approaches to Implement Feature
Model Composition" [Acher et al. 2010a].

Composition has a long tradition in software engineering, be it for merging separate
branches of independent development, for combining simple objects or data types into
more complex ones, for reconciling the elements of a modeling or language concept or for
assembling the fragments of larger component systems. Though a multitude of approaches
have been proposed for composing artifacts of various natures (textual documents, code,
components, models, aspects, etc.), we should consider the specificities of the formalism
of feature models.

We first ask what does composition mean in the context of feature models. We identify three
important forms of composition (Section 5.1). We design and define the semantics of three
composition operators: insert (Section 5.2), aggregate (Section 5.3) and merge (Section 5.4).

In Section 5.5, we study how composition can be realized in the context of feature models. In
particular, we compare different approaches to implement the merge operator. The study
provides some evidence that using generic model composition frameworks are not helping
much in the realization, whereas a specific solution, based on propositional logic, is finally
necessary and clearly stands out by its qualities.

5.1 DIFFERENT FORMS OF COMPOSITION

In their seminal paper, Kang et al. already proposed a compositional mechanism at the
level of one feature model, called composition rules, in which "features are related to one an-
other primarily through the use of composition rules, which are a type of constraint on the
use of a feature" [Kang et al. 1990]. The survey of the literature about feature modeling, our
own experience in different application domains and some inspiration about model-based
approaches (i.e., aspect-oriented modeling) lead us to further investigate compositional
mechanisms for feature models. Figure 5.1 summarizes the different forms of composition
we have identified so far.
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Figure 5.1: Different ways of composing feature models

The first identified mechanism, called insert, aims at introducing new features, already
organized in a feature model, into a specific location of another existing feature model. It
is primarily used to populate an existing feature model with additional information. For
example, in Figure 5.1, FMmdata extends the concept of Format modeled in FMMIsupport

by incorporating details about metadata support. The insert mechanism may also enable
reuse of an existing feature model when creating a larger composed feature model.

The second identified mechanism, called aggregate, supports cross-tree constraints
between features so that separated feature models can be inter-related. For example,
FMMIsupport and FMalgo, two concerns of a medical imaging service, are inter-related
with two constraints that involve features PET, PAM, CT, SPEC and BAM (see Fig-
ure 5.1).

The third mechanism, called merge, is dedicated to the composition of feature models
that exhibit similar features (i.e., features with the same name). For example, different
feature models (see FMalgo, FMalgo1 and FMalgo2 in Figure 5.1) have been elaborated
(e.g., by different suppliers) to describe a family of medical imaging algorithm.

5.1.1 Main Design Choices and Background

For all the identified mechanisms, we prefer to use the term operator as usually found in
the programming language literature. We see an operator as a special form of function
with a limited range of parameter forms. We consider that an operator is similar to an
operation in mathematics, i.e., an action or procedure which produces a new value from
one or more input values. In our case, the operators produce a new feature model from
one or more input feature models. As for any operators, we need to define i) syntactical
mechanisms that describe how to apply it (e.g., what are its parameters) and ii) semantic
properties that characterize the input feature models as well as the resulting feature model.
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We define the semantics of these operators both in terms of configuration semantics and
feature hierarchy.

We consider that the primary meaning of a feature model, known as its configuration se-
mantics, is a set of legal configurations, i.e., sets of selected features that respect the depen-
dencies entailed by the diagram and the cross-tree constraints (see Definition 4, page 24).
We thus define the semantic properties of each operator in terms of the relationship be-
tween the configuration sets of the input models and the resulting feature model. In partic-
ular, we rely on the classification proposed in [Thüm et al. 2009] that covers all the changes
a designer can produce on a feature model and that provides a sound basis for reasoning
about these changes. In [Thüm et al. 2009], the authors distinguish and classify four fea-
ture model adaptations1 (see Definition 10). In this chapter but also in the reminder of the
thesis, we will use extensively this classification to characterize the relationship between
two feature models.

Definition 10 (Specialization, Refactoring, Generalization, Arbitrary Edit). Let f and g be
two feature models, JfK and JgK denote their respective sets of configurations.

• f is a specialization of g if JfK ⊂ JgK
• f is a generalization of g if JgK ⊂ JfK
• f is a refactoring of g if JgK = JfK
• f is an arbitrary edit of g if f is neither a specialization, a generalization nor a refactoring of g.

The reduced product2 of two sets of sets is also given (see Definition 11) since we will use
it to characterize the relationship between two configuration sets.

Definition 11 (Reduced product). Let A and B being a set of sets.
The reduced product, denoted ⊗, is defined as follows:

A⊗B = {a ∪ b | a ∈ A, b ∈ B}

Another important property of a feature model is the way features are organized – re-
flected in the feature hierarchy. We recall that two feature models can have identical config-
uration semantics, yet different hierarchies and thus meaning (see Section 3.1.2, page 24).
As a result, we consider that the feature hierarchy (see Definition 3, page 24) should also
be part of the semantics of the composition operators.

5.2 INSERT OPERATOR

In Figure 5.1, the concept of medical image is designed from a general perspective and
described as a feature model (see FMMIsupport). It acts as a base or primary model that
may not provide all the elements required by an application or system of a medical image,
that is, it may be augmented with other features describing different aspects of a medical
image. This base model can be composed incrementally with other feature models describ-
ing different aspects of features in the base model. These other feature models are called

1The authors use the term “edits” since a set of changes to a feature model are applied. An example of edit
given in their paper is “moving a feature from one branch to another”.

2In [Acher et al. 2009b; 2010b], we used the term "cross product". It introduces too much confusion regarding
the "cartesian product" used in mathematics. As a result, we choose to reuse the term "reduced product" introduced
in [Schobbens et al. 2007].
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aspects3. The insert operator aims at introducing newly created elements into any base el-
ement or inserting elements from the aspect model into the base model. For example, an
SPL practitioner can extend the Format feature associated to a medical image by including
the metadata information represented in an aspect feature model FMmdata.

5.2.1 Design Choices

As argued in [Jeanneret et al. 2008], one has to address three concerns when composing
two models: Decide which concepts described in the models will be composed – what
; Select a location where the insertion or modification will take place in the destination
model – where ; Determine how to integrate the selected concepts in the composed model
to obtain the desired result – how.

In the example of Figure 5.1, the dotted arrows suggest that the feature Metadata is
inserted below the feature Format while the feature MRI is inserted as a sibling feature of
features CT, PET and SPEC. We consider that:
What the entire aspect feature model is inserted and the original feature model is not

altered. The precondition of the insert operator requires that the intersection between
the set of features of the base feature model and the one of the aspect feature model is
empty. This condition preserves the well-formed property of the composed feature
model which states that each feature’s name is unique ;

Where there is a feature of the base feature model that acts as a joint point where the aspect
feature model will be inserted ;

How there are various ways to insert an aspect feature model (see Figure 5.1). For exam-
ple, an SPL practitioner may consider that not all medical images support metadata
information (or that the medical imaging service is unable to treat metadata). In
this case, the aspect feature model FMmdata can be inserted as optional – the fea-
ture Metadata becomes an optional, child feature of Format. For the aspect feature
model FMMRI , we would like to insert it as part of the Xor-group constituted by the
features CT, PET and SPEC – the feature MRI becomes a child feature of Modality-
Acquisition and belongs to the Xor-group of CT, PET and SPEC. As showed by the
examples, the variability information should be part of the insert operator.

Syntactic definition. An SPL practitioner needs syntactic mechanisms to precisely define
what needs to be inserted, where and how the insertion is achieved. We syntactically
define the insert operator as follows:

insert (aFM: FeatureModel, bFM: FeatureModel, jptFeature: Feature, vop:
VariabilityOperator)

It takes four arguments: the aspect feature model to be inserted (aFM ), the base feature
model (bFM ), the targeted feature (a feature in the base model) where the insertion needs
to be done (jptFeature), and the variability operator vop specified by the user (whose
value is either Mandatory, Optional, Xor, Or).

3We will see afterwards why distinguishing an aspect feature model from a base feature model is important
when defining the semantical properties’ of the insert operator. We reuse here the terminology of the aspect-
oriented programming/modeling (AOP/AOM) community (aspect, join point) since we rely on the principles of
AOP/AOM.
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5.2.2 Semantics

Two cases are important to distinguish when performing the insertion:
• when the variability operator is either Mandatory or Optional, the root of the aspect

feature model is inserted as a child feature of the join point feature. Two examples
are given in Figure 5.2. The insertion of Aspect1 with vop = Mandatory (resp.
vop = Optional) into the feature B of Base1 (see Figure 5.2(a)) produces a new
feature model depicted in Figure 5.2(b) (resp. in Figure 5.2(c)) ;

• when the variability operator is either Xor or Or, the root of the aspect feature model,
say aFT , is inserted as a sibling feature of the join point feature. For example, when
Aspect2 is inserted into the feature N of Base2 with vop = Xor (see Figure 5.2(d),
the root feature of Aspect2, R, is inserted as a sibling feature of N (i.e., R is inserted
as a child feature of M, the parent of N). In addition,

– if the join point feature belongs to a feature group (Xor or Or), then i) aFT is
part of the feature group and ii) the feature group is changed according to the
value of vop. For example, the features R, N, O and P form a Xor-group (see
Figure 5.2(e)) after the insertion of Aspect2 with vop = Xor into Base2 (see
Figure 5.2(d)).

– in case the join point is a solitary feature (i.e., does not belong to a feature
group), a new feature group is created according to the value of vop and consti-
tuted by aFT and jptFeature.

The insertion of an aspect feature model into the root feature of the base feature
model with the variability operator Xor or Or is not allowed (since the root feature of
the base feature model has, by definition, no parent).

Semantic properties. How an aspect feature model is inserted has a direct impact on the
set of configurations of the resulting feature model. The insert operator can be seen as an
edit (or modification) of a feature model (i.e., the base feature model) into another feature
model (i.e., the new composed feature model). In particular, an insertion may change the
set of legal feature combinations of the base feature model. As a result, the relationship
between the base feature model and the new composed feature model is of primary inter-
est. It explains why we make the distinction between an aspect feature model and a base
feature model – we are mostly interested in the evolution of the base feature model.

In the reminder, BaseF M and Base′F M are two feature models and JBaseF M K and
JBase′F M K denote their respective set of configurations. insert produces a feature model
Base′F M given a base feature model BaseF M and an aspect feature model AspectF M . The
semantics of the operator insert is expressed in terms of the relationship between the
configuration sets of the input models (BaseF M and AspectF M ) and the resulting model
Base′F M , that this, the semantics of the operator insert is defined in terms of the relation-
ship between JBaseF M K, JAspectF M K and JBase′F M K.

We now illustrate and analyze the properties of the insert operator, given several rele-
vant examples. It is tempting to state that when an aspect feature model is added some-
where in a base feature model BaseF M , the set of configurations of BaseF M "grows" nec-
essarily, that is, new configurations are added to the original set of configuration (and
thereby Base′F M is a generalization of BaseF M ). This is not necessary the case (Base′F M

can also be an arbitrary edit or a refactoring of BaseF M ).

Arbitrary edit. Let us consider the feature models of Figure 5.2(a). We consider the case
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Figure 5.2: Four insertions with different variability operators (optional, mandatory, Xor)
and relationships between Base′F M and BaseF M (generalization, refactoring)

where the aspect feature model is inserted into the feature B with Mandatory as variability
operator (see Figure 5.2(b)). The evolution of the base feature model of Figure 5.2(a) into a
new composed feature model has altered its original set of configurations. We can notice
that each valid configuration of the resulting composed feature model is no longer a valid
configuration of the base feature model. The situation corresponds to an arbitrary edit (see
Definition 10) between BaseF M and Base′F M . More precisely, the set of configurations of
the composed feature model is equal to the reduced product (see Definition 11) of the two
configuration sets, i.e., the following relation holds: JBaseF M K⊗JAspectF M K = JBase′F M K

Generalization. Base′F M may be a generalization of BaseF M : In this case, new configura-
tions, not valid in of BaseF M , are represented while all original configurations of BaseF M

are also valid in Base′F M . An example is given in Figure 5.2(c) in which the aspect fea-
ture model has been inserted into the feature B with optional as variability operator. In
this case, all configurations originally valid in the base feature model (see Figure 5.2(a))
are also valid in the composed feature model. The additional set of configurations can be
characterized with the cross product. Formally:

(JBaseF M K⊗ JAspectF M K) ∪ JBaseF M K = JBase′F M K (5.1)

Another example of generalization for which the relation 5.1 truly holds is given in Fig-
ure 5.2(e): an aspect feature model Aspect2 has been inserted into the feature N of the base
feature model Base2 with Xor as variability operator.
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Figure 5.3: Insertion and satifiability: the case of void feature model

Refactoring. In Figure 5.2(f), the aspect feature model FMMRI is inserted into the feature
CT with mandatory as variability operator. BaseF M and Base′F M have exactly the same set
of configurations (i.e., Base′F M is a refactoring of BaseF M ). The reason is that the feature
CT is originally a dead feature – a feature that no valid configuration can include (see
Definition 8, page 26) – in BaseF M , and thus, all its child features are also dead features.

Another important facet of the semantics of the insert operator is related to the satisfi-
ability of the feature models. We recall that a feature model is void (or unsatisfiable) if it
represents no configurations (see Definition 7, page 26).

Satisfiability. Let us consider the base feature model of Figure 5.3(a). It may happen that
the insertion of an aspect feature model does produce a void feature model in case the base
feature model is void. For example, in Figure 5.3(b), the aspect feature model Aspect2 is
inserted into the feature N with mandatory as variability operator: The resulting feature
model is also void. Intuitively, when a feature model is void, all features are dead. As a
result, we are in the same situation as in Figure 5.2(f) – no new configurations have been
added to the original empty set of configurations of the base feature model.

In addition, it is also possible that a base feature model whose set of configurations is
empty (as the one of Figure 5.3(a)) becomes a non void feature model after an insertion.
For example, in Figure 5.3(c), the aspect feature model Aspect2 is inserted into the feature
N with Xor as variability operator. The resulting feature model is no longer void since four
configurations are now valid: JBase′F M K = { { L, M, U, R, S }, { L, M, U, R, T, }, { L,
M, U, R, S, V }, { L, M, U, R, T, V } }

Recaps. The various examples show that the kind of relationship between BaseF M and
Base′F M is dependent both on the original properties of BaseF M and AspectF M , the vari-
ability operator and the joinpoint feature chosen. Table 5.1 recaps the kind of relationship
and the relationship betweenBaseF M andBase′F M in terms of sets of configurations using
the examples of this section. Importantly, Base′F M being a specialization (see Definition
10) of BaseF M is not possible, assuming that AspectF M is not void.
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Example Relationship Properties
Figure 5.2(b)
and 5.3(c)

arbitrary edit JBaseF M K⊗ JAspectF M K = JBase′F M K

Figure 5.2(c)
and 5.2(e)

generalization JBaseF M K ⊂ JBase′F M K ∧
(JBaseF M K ⊗ JAspectF M K) ∪ JBaseF M K =
JBase′F M K

Figure 5.3(b)
and 5.2(f)

refactoring JBaseF M K = JBase′F M K

Table 5.1: Insert operator: properties of Base′F M in terms of BaseF M and AspectF M

Proof by contradiction. Suppose Base′F M is a specialization of BaseF M when AspectF M

is inserted into BaseF M . In this case, all inserted features, including the root feature
aFT of AspectF M , should be dead in Base′F M (otherwise there exists a configuration
c ∈ JBase′F M K such that aFT ∈ c and Base′F M is an arbitrary edit or a generalization
ofBaseF M ). The only situation in which the feature aFT can be dead is when it is inserted
as a child feature of another dead feature of BaseF M . Therefore it does not change the set
of configurations and JBaseF M K = JBase′F M K. This contradicts our initial assumption, so
we can conclude that Base′F M is not a specialization of BaseF M .

Similarly, we can demonstrate that an insertion of an aspect feature model into a satis-
fiable base feature model cannot produce a void feature model.

This simply follows the meaning of an insertion which is to add details and to populate
the base feature model with additional information (as initially discussed in the beginning
of this section). Due to the various kinds of relationships that may hold when perform-
ing an insertion, automated techniques are needed to reason about the properties of the
composed feature model. This is further discussed in the next chapters.

5.3 AGGREGATE OPERATOR

Another form of composition is to aggregate two (or more than two) feature models (e.g.,
see Figure 5.4(a)). The operator aims to inter-relate separated feature models through
cross-tree constraints: Features in input feature models are related to each other through
relations expressed in propositional logic.

5.3.1 Design Choices

To define the syntax or the semantic properties of the aggregate operator, we do not make
the distinction between a base feature model and an aspect feature model. We rather con-
sider that the feature models are equally important.

Syntactic definition. We syntactically define the aggregate operator as follows:

aggregate (sFM: set of FeatureModel, sCst: set of Constraint)
The aggregate operator takes as input a set of feature models (sFM ), a set of proposi-

tional constraints (sCst) and produces a new feature model. The input feature models are
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aggregated under a synthetic root syntheticft so that the root features of input feature mod-
els are child-mandatory features of syntheticft. In addition, the propositional constraints
are added in the resulting feature model.

Why a synthetic root? Instead of creating a new root feature in the resulting feature
model, one can argue that one of the root features of the input feature models can play
the role of the root feature. This solution may not properly restitute the meaning of the
features and the way they are conceptually or ontologically related. For example, the feature
A can be the root feature of the aggregated feature model while the feature M becomes
its child-mandatory feature. However, the concept described by the feature A may not be
composed-of or refined by the concept described by the feature M, i.e., the two concepts
may be unrelated or the relation between A and M should actually be reversed. Another
conceivale solution is to build a forest (i.e., a disjoint union of trees).

In line with the formalism used throughought the thesis, we consider that the synthetic
root is only here to ensure the well-formedness of the hierarchy and is not part of the set of
configurations of the aggregated feature model. Its particular status should be treated as
such by a tool (e.g., when encoding the feature model into a propositional formula).

5.3.2 Semantic properties

From a semantical perspective, it is interesting to characterize the set of configurations
of the aggregated feature model in terms of the set of configurations of the input feature
models. The aggregate operator is applied four times using the same input feature models,
FMc1 and FMc2, but with a different set of constraints: The four resulting feature models,
noted FM1aggregated, FM2aggregated, FM3aggregated and FM4aggregated, are shown in Fig-
ure 5.4(a), 5.4(b), 5.4(c) and 5.4(d). We analyze their properties.
Reduced product. In Figure 5.4(a), the following relation holds:

JFM1aggregatedK ⊂ (JFMc1K⊗ JFMc2K)

Intuitively, some valid configurations of FMc1 and FMc2 are combined together to
form new configurations in FM1aggregated. Due to the constraints, not all combination of
configurations of FMc1 and FMc2 are allowed in FM1aggregated. For example, { A, B, E,
S, M, N, Model } is not valid in FM1aggregated.

Redundant constraints. In Figure 5.4(b), the following relation holds:

(JFMc1K⊗ JFMc2K) = JFM2aggregatedK

Contrary to the previous example, the constraints do not reduce the set of configura-
tions (JFMc1K ⊗ JFMc2K) and all combination of configurations of FMc1 and FMc2 are
allowed in FM2aggregated. As a result, the aggregated feature model of Figure 5.4(a) is
logically equivalent to the aggregation of FMc1 and FMc2 without constraints. Intuitively,
the constraint N ⇒ B is logically entailed by the aggregation of FMc1 and FMc2 without
constraints.

Dead and core features. In Figure 5.4(c), the following relation holds:

(JFMc1K⊗ JFMc2K) ⊂ JFM3aggregatedK
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Due to the constraints, features D and E are now dead features while feature C is a
core feature (see Definition 9, page 27) of FM3aggregated.

Void feature model. In Figure 5.4(d), the following relation holds:

JFM4aggregatedK = ∅

Hence the aggregation of two feature models together with constraints may produce a
void feature model.

Recaps. The properties of the aggregated feature model heavily depends on the set of
propositional constraints used during the aggregate. It may lead to situations where the
aggregated feature model does not represent any valid configuration or include dead or
core features. We consider that the aggregate operator is purely syntactical: Other auto-
mated techniques should be developed, for example, to simplify the aggregated feature
model or to reason about its properties. This is further discussed in the next chapters.

5.4 MERGE OPERATOR

5.4.1 Design Choices

Motivation. Different views or perspectives are usually elaborated to describe a system,
a concern of the system or simply a concept. The views or perspectives may exhibit vari-
ability and therefore several feature models may be developed. For example, the different
feature models FMalgo, FMalgo1 and FMalgo2 of Figure 5.1, page 52 can be seen as differ-
ent views of a medical imaging algorithm. In this case, it is likely that feature models use
similar features to describe the system under study. As a result it is necessary to reason
about their composition. In particular, one wants to merge the overlapping parts of the
feature models to obtain a single model that presents an integrated view of the system. We
thus design a merge operator that, given a set of input feature models, produces a new
feature model, called merged feature model.

Assumptions. The goal of model merging is traditionally to group together (i.e.,
merge) model elements that describe the same concepts in the input models to be com-
posed [Brunet et al. 2006]. In the context of feature models, we consider that model ele-
ments are features and that two features match (i.e., represent the same concepts) if they
have the same name. For example, when merging the two feature models fmm3 and fmm4
(see Figure 5.6(a) and Figure 5.6(b)), we consider that the features A, B, C, F, E match.
We assume that at least the root features of the input feature models match (i.e., have the
same name).

Syntactic definition. At this step, a crucial issue is to determine which variability informa-
tion should be attached to features in the merged feature model. We consider that there
are different ways to perform the merging, i.e., different semantics of the merge opera-
tor can be chosen. For example, we might want to include all configurations of the input
feature models ; we might have a more restrictive strategy in which only common configu-
rations of the input feature models are retained, etc. In both cases, we consider that the key
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element that determines the semantics’ choice of an SPL practitioner is the set of configu-
rations characterized by the merged feature model. We syntactically define the aggregate
operator as follows:

merge (sFM: set of FeatureModel, mode: MergeMode)
We consider that the merge operator takes as input a set of feature models sFM , a

merging mode mode and produces a new feature model. As there are different ways to
merge two or more than two feature models, several modes are defined for the merge
operator. The merging mode can be either union, strict union, intersection or diff. The set of
configurations expressed by the merge feature model depends on this merging mode.

5.4.2 Semantic properties

Configuration Semantics. Like for the operators insert or aggregate, the properties of a
merged feature model produced by an application of the merge operator are formalized
in terms of the sets of configurations of input feature models. We now described these
properties for all modes of the merge operator.

Union mode. The union mode is the most inclusive option: the merged feature model
includes all the valid configurations defined by the input feature models. Formally:

JFM1K ∪ JFM2K ⊆ JFMrK (M1)

The propertyM1 and this mode are considered in [Segura et al. 2008, Acher et al. 2009b].
We will not use this mode in the context of the thesis since the property M1 is too loose. In
particular, some valid configurations of FMr are neither valid in FM1 nor in FM2, leaving
open to various interpretations. Therefore the configuration semantics of FMr appears to
be too vague for this mode.

Strict Union mode. In the strict4 union mode, we want to obtain a merged feature model
FMr that represents exactly the union of the two sets of configurations of FM1 and FM2.
In this mode, each valid configuration of FMr is also valid either in FM1 or FM2 (or in
both). Formally:

JFM1K ∪ JFM2K = JFMrK (M2)

The merge operator in the strict union mode is denoted FM1 ⊕∪s
FM2 = FMr.

An example is given in given in Figure 5.5: fmm56 (see Figure 5.5(c)) is the feature
model resulting from the merge in intersection mode of fmm5 (see Figure 5.5(a)) and fmm6
(see Figure 5.5(b)).

Intersection mode. The intersection mode is the most restrictive option: the merged fea-
ture model, FMr, expresses the common valid configurations of FM1 and FM2. The
merge operator in the intersection mode is denoted as follows: FM1 ⊕∩ FM2 = FMr.
The relationship between a merged feature model FMr in intersection mode and two in-
put feature models FM1 and FM2 can be expressed as follows:

JFM1K ∩ JFM2K = JFMrK (M3)

4In [Acher et al. 2009b], we use the expression "strict union mode" to clearly differentiate the property M1
from the property M2. We keep this terminology in this thesis.
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Figure 5.5: Merging in strict union mode (fmm5 ⊕∪s
fmm6 = fmm56) and diff mode

(fmm5 ⊕\ fmm6 = fmdiff56)

An example is given in given in Figure 5.6: fmm34 (see Figure 5.6(c)) is the feature
model resulting from the merge in intersection mode of fmm3 (see Figure 5.6(a)) and fmm4
(see Figure 5.6(b)).
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Figure 5.6: Merging in intersection mode: (fmm3 ⊕∩ fmm4 = fmm34)

As we rely on set theory, the merge operators in union, strict union and intersection
mode are associative and commutative w.r.t. the set of configurations. Therefore, the prop-
erties M1, M2 and M3 defined for two feature models can be extended to n feature models,
n ≥ 2.

Diff mode. Another merge operator, called diff, is denoted as FM1 ⊕\ FM2 = FMr.
The following defines the semantics of this operator:

JFM1K \ JFM2K = {x ∈ JFM1K |x /∈ JFM2K} = JFMrK (M3)

An example is given in given in Figure 5.5: fmdiff56 (see Figure 5.5(d)) is the feature
model resulting from the merge in diff mode of fmm5 (see Figure 5.5(a)) and fmm6 (see
Figure 5.5(b)).

Hierarchy. Several feature models, with different hierarchies, can represent the same set
of configurations (see Chapter 3, page 26). So in particular several merged feature mod-
els can be produced and consistently represent the expected set of configurations while
having different hierarchies. From a user perspective, some hierarchies may decrease the
maintainability or understandability of the resulting feature model. We consider that the
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hierarchy of the merged feature model should be part of the semantics of the merge oper-
ator.

Strict union mode. We first consider the merge in strict union mode. When the input
feature models have the same parent-child relations w.r.t. the common features, the hi-
erarchy of the merged feature model is immediate: It is simply the union of the set of
features of the input feature models and the union of the set of edges of the input fea-
ture models. For example, we consider the merging of FMi1 and FMi2 (see Figure 5.7).
The hierarchy is Gh12 = (Vh12, Eh12, rh12) with Vh12 = FF Mi1 ∪ FF Mi2 = {A,B,C},
Eh12 = EF Mi1 ∪ EF Mi2 = {(A,B), (B,C)} and rh12 = A.

It is more complex when merging FMi2 and FMi3 (see Figure 5.7). The parent-child
relationship between B and C is not in the same order in FMi2 or FMi3. At first glance,
it seems difficult to determine the most desirable hierarchy. Intuitively we want a predom-
inant hierarchy that restitues as much as possible the parent-child relationships originally
expressed in FMi2 and FMi3. For this example, three predominant hierarchies are ob-
tained. Two of the hierarchies, though, cannot be used to build the feature model. Let us
investigate why.

The expected set of configurations of the merged feature model, denoted FMh123:
JFMi2K ∪ JFMi3K = JFMh123K = {{A,B}, {A,B,C}, {A,C}, {A}}
We can observe that the feature B cannot be a child feature of C (otherwise, the con-

figuration {A,B} is not valid). Similarly, the feature C cannot be a child feature of B
(otherwise, the configuration {A,C} is not valid). Fortunately the third predominant hier-
archy, in which features B and C are sibling features, can be chosen.
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Let us now consider the merging of FMi1, FMi2 and FMi3 (see Figure 5.7). In this ex-
ample, there is only one predominant hierarchy: The feature B is the parent feature of the
feature C since it is also the case in the two feature models FMi1 and FMi2. Unfortunately,
this predominant hierarchy cannot be used to build the feature model.

The idea of predominant hierarchy, as currently exposed, is not correct. The reason is
that the solution only considers one aspect of a feature model at a time – the hierarchy.
We need to consider at the same time the configuration semantics and the hierarchy of the
feature models. In particular, we have identified that, in some cases, the set of possible
hierarchies is restricted by the expected set of configurations.

Hence, we propose to work directly at the level of configuration semantics. We first
compute the implication graph I of the propositional formula φr, representing the set of
configurations of FMr, the merged feature model. I is a directed graph I = (Vimp, Eimp)
formally defined as follows:

Vimp = Fr Eimp = {(fi, fj) | φr ∧ fi ⇒ fj} (5.2)

Each binary, directed edge from feature fi to feature fj represents an implication. Bi-
nary edges in the implication graph are candidate as parent-child relationships in a feature
model. However, the transitivity of implication results in many more binary edges. Hence
we need to select and remove some edges until obtaining a comprehensive hierarchy (i.e.,
a tree). Intuitively, the more a parent-child relation occurs in the input feature models, the
more an edge in the implication graph should be retained.

We formulate the problem of choosing a hierarchy from amongst a set of hierarchies as
a directed minimum spanning tree problem [Edmonds 1967].

I is now considered as a directed, weighted graph. A function w : Eimp → N assigns
a weight w(e) to each edge e ∈ Eimp equal to −n, n being the number of times e occurs
in the different hierarchies of the input feature models (see red arrows in Figure 5.7). The
problem is then to find a rooted directed spanning tree, T = (Vimp, S) where S is a subset
of Eimp and such that the function w(T ) =

∑
e∈T w(e) is minimized. The rooted directed

spanning tree is defined as a graph which connects, without any cycle, all nodes with
|Vimp| − 1 edges.

Several algorithms have been developed for resolving the problem [Edmonds 1967,
Tarjan 1977]. The order of complexity is similar to the algorithms developed for the clas-
sical problem of undirected minimum spanning tree. An important property is that there
may be several directed minimum spanning trees of the same weight having a minimum
number of edges. Without additional knowledge or clear criteria, the hierarchy can simply
be arbitrary chosen.

Intersection and diff mode. We now consider the merge in intersection or diff mode. An
important remark is that some features of the input feature models may not be part of any
configuration of the merged feature model. For example, the merge in intersection mode
of fmm3 (see Figure 5.6(a)) and fmm4 (see Figure 5.6(b)) produces a feature model fmm34
(see Figure 5.6(c)) in which the feature B is not present. As a result, similar techniques
can be applied to determine the hierarchy of the merged feature model but dead features
should be preliminarily removed.
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5.5 IMPLEMENTATION OF THE MERGE OPERATOR

We have defined the properties of the composition operators – mainly in terms of set of
configurations and hierarchy of the input and composed feature models. The challenge
is now to develop automated techniques that compute the feature models while guaran-
teeing the expected properties. The implementation of the insert and aggregate operator
is rather straightforward. In this section, we focus on the implementation of the merge
operator that presents much more difficulties.

5.5.1 Propositional Logic Based Merging

The computation of the hierarchy of the merged feature model has indicated that we need
to reason directly at the semantic level. The key ideas of the proposed algorithm are to
i) compute the propositional formula representing the expected set of configurations and
then ii) to apply propositional logic reasoning techniques to construct a feature model,
including a hierarchy, feature groups and constraints, from the propositional formula.

Formula Computation. For each mode of the merge operator, a different propositional
formula is computed.

Union. The strict union of two sets of configurations represented by two feature mod-
els, FM1, and FM2, is computed as follows. First, FM1 (resp. FM2) feature models are
encoded into a propositional formula φF M1 (resp. φF M2 ) as defined in [Batory 2005, Czar-
necki and Wąsowski 2007]. Then, the following formula is computed:

φResult = (φF M1 ∧ not(FF M2 \ FF M1)) ∨ (φF M2 ∧ not(FF M1 \ FF M2))
with FF M1 (resp. FF M2 ) the set of features of FM1 (resp. FM2) feature model. FF M2 \

FF M1 denotes the complement or difference of FF M2 with respect to FF M1 .
not is a function that, given a non-empty set of features, returns the Boolean conjunc-

tion of all negated variables corresponding to features:

not({f1, f2, ..., fn}) =
∧

i=1..n

¬fi

The presence of negated variables is needed since we need to emulate the deselection
of features that are in FM1 (resp. FM2) but not in FM2 (resp. FM1). Otherwise, two
features, say f ∈ FF M1 and g ∈ FF M2 such that f 6= g, can be combined to form a config-
uration, thereby violating the configuration semantics of the merge in strict union mode.
The importance of negating features is illustrated in Appendix .1.

Intersection. Computing the intersection of two sets of configurations represented by
two FMs, FM1 and FM2, follows the same principles and we obtain:

φResult = (φF M1 ∧ not(FF M2 \ FF M1)) ∧ (φF M2 ∧ not(FF M1 \ FF M2))

Diff. Similarly, computing the diff of two sets of configurations represented by two
FMs, FM1 and FM2, is as follows:

φResult = (φF M1 ∧ not(FF M2 \ FF M1)) ∧ ¬(φF M2 ∧ not(FF M1 \ FF M2))

From formula to feature model. We reuse and adapt techniques presented in [Czarnecki
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and Wąsowski 2007, She et al. 2011]. Czarnecki et al. propose an algorithm to construct a
feature diagram from a Boolean formula. Propositional logics techniques are developed
to detect features logically implied, Xor- and Or- groups using the method of prime impli-
cants. Furthermore the authors propose a generalized notation, roughly, a directed acyclic
graph with additional nodes for feature groups. A major difference is that, in our work,
we already know the resulting hierarchy, i.e., a tree in which a feature has only one parent.
We thus exploit this information to streamline the algorithm. It proceeds as follows:

À Hierarchy. We first compute GResult, the hierarchy of the merged feature model, as
previously explained. At this step, all features, except root, are optional (see Definition 1,
page 23).

Á Mandatory and Feature Groups. We compute the implication graph (see previous
section), noted IResult, of the formula φResult over F ′Result = FResult \ deads(φResult),
FResult being the set of features of FMResult, deads being a function that computes the set
of dead features.

IResult is a directed graph G = (V,E) formally defined as:

V = F ′Result E = {(fi, fj) | φResult ∧ fi ⇒ fj}

We use IResult to identify biimplications and thus set mandatory features together
with their parents (i.e., setting EResultMAND

). For feature groups, we reuse the prime
implications method proposed in [Czarnecki and Wąsowski 2007] and thus set FResultXOR

and FResultOR
. It must be noted that a feature may be candidate to several feature groups

(which is not allowed by our formalism). For example, a feature may be candidate to be
part of an Or-group and a Xor-group. Nevertheless, it is difficult to determine whether
a feature group must predominate over another feature group. Moreover, it is out of the
scope of the semantics of the merge operator. Currently, we use the information of the
original input feature models to favor features that were initially grouped.

Â Constraints. The set of implies constraints, if any, can be deduced by removing edges
of IResult that are already expressed in the feature diagram (e.g., parent-child relations).
Similarly, excludes constraints that were not chosen to be represented as an Xor-group are
added. During the incremental adding of constraints, we control that the constraint is not
already induced by the current feature diagram.

The feature diagram, including the implies/excludes constraints, may still be an over
approximation of φResult. It is detected by checking the logical equality between φResult

and φResultdiagram
, the encoding of the computed feature diagram as a propositional for-

mula. The relative complement of φResult with respect to φResultdiagram
corresponds to

ψResultcst
(see Definition 2, page 24) and can be computed using standard propositional

logic techniques.

5.5.2 Comparison with Other Techniques

There are several existing techniques that are intuitive candidates to implement the merg-
ing operators. We briefly describe some of these techniques and report our experience with
them (see [Acher et al. 2010a] for more details).

The overall idea of the technique described in [Schobbens et al. 2007] and [Heymans
et al. 2008] is that intersection or (strict) union can be realized by maintaining separate input
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feature models and inter-relating them with constraints. The major limitations are that i)
the resulting merged feature model may contain anomalies (false optional features, dead
features) and ii) the entire set of features of input feature models is included in the resulting
feature model so that the number of features quickly increases and large feature models are
produced. The authors recognize that "the resulting feature model should probably be simplified
for readability”. The presented technique can be seen as a reference-based technique. In
the next chapter, we will further study this class of techniques and show that they imply
additional drawbacks. Furthermore, we will show how anomalies can be removed and
thus how the resulting feature model can be simplified for readability in Chapter 7.

Alves et al. motivate the need to manage the evolution of feature models or more gen-
erally of an SPL and extend the notion of refactoring to feature models [Alves et al. 2006].
Although their work is focused on refactoring single feature models, they also suggest to
use these rules to merge feature models. Inspired by the work of Alves et al., Segura et al.
provide a catalogue of visual rules to describe how to merge feature models [Segura et al.
2008]. They propose to apply the catalog of rules using AGG technology [Taentzer 2004].
In AGG, a transformation rule is composed mainly of a source graph or Left-Hand Side
(LHS) and a target graph or Right-Hand Side (RHS). For each merge rule of the catalogue,
LHS consists of two input feature model patterns (pre-conditions) and RHS describes an
output feature model pattern representing the merging result (post-conditions). Our expe-
rience is that the implementation turned out to be time-consuming and error-prone. More
importantly, the confidence in the implementation appears to be too low: There is no proof
of the completeness of the AGG rules so that the semantic properties cannot be guaran-
teed in all cases. Studying theorem provers and model checkers, as done in [Gheyi et al.
2006] for refactoring rules (the starting point of [Segura et al. 2008]), is still to be done and
requires intensive research. The intersection mode remains particularly challenging to be
implemented due to the presence of dead features.

We also considered the use of Kompose [Reddy et al. 2006, Fleurey et al. 2007] which
implements a generic structural composition operator that can be specialized for a par-
ticular modeling language. In Kompose, the composition mechanism is structured in two
major phases: (1) The Matching phase identifies model elements that describe the same con-
cepts in the input models to be composed; (2) The Merging phase where matched elements
are merged to create new elements in the resulting model. We reuse Kompose facilities to
realize the merging strategy. The decision to merge features or not and the nature of the
resulting operator depends on the intended semantic properties (e.g., the merging of an
Or-group with an Or-Group gives an Or-Group in union mode), as described in [Acher
et al. 2009b]. Our experience is that a compositional approach structured in two-stages
(matching and merging) is too syntactical for reifying the variability information, espe-
cially in the presence of constraints.

In [Acher et al. 2009b], we assumed that input feature models do not contain cross-
tree constraints. Nevertheless, the handling of constraints in feature models is useful and
we raise this limitation in this chapter. Moreover, this assumption is not valid in the gen-
eral case since the merge operator may produce constraints in the merged feature model.
For example, if we consider the merge in strict union mode of fmm5 (see Figure 5.5(a))
and fmm6 (see Figure 5.5(b)), we can observe that the resulting feature fmm56 (see Fig-
ure 5.5(c)) does contain constraints.

[van den Broek et al. 2010] consider the problem of merging feature models which "con-
sist of trees with implies and excludes constraints". They propose an algorithm that guarantees
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some properties (minimality, parent compatibility, commutativity, etc.) of the merged fea-
ture models. The formalism used exactly corresponds to the notion of feature diagram de-
fined in Chapter 3. They also assume that the input feature models are parent-compatible.
Therefore their algorithm should be adapted to handle arbitrary propositional constraints
and deal with different hierarchies. This last limitation is also shared by the work of [Alves
et al. 2006, Segura et al. 2008, Acher et al. 2009b].

To summarize, the use of propositional logic techniques for the implementation of the
merge operators outperforms current solutions, raises previous limitations and notably
preserves, by construction, the set of configurations.





Six

Merge Operator and Multiple Feature Models

This chapter shares material with the technical report "Managing Multiple Software Prod-
uct Lines Using Merging Techniques" [Acher et al. 2010b]

In this chapter, we show how merging techniques can be used to manage multiple feature
models. We illustrate how the merge operators can be applied to manage the variability of
a set of SPLs (called multiple SPLs in the rest of the chapter) by producing feature models
that support selection of products from among sets of competing products provided by
different suppliers. We use the example of Chapter 4 that involves the building of a catalog
of medical image analysis services. We show that the proposed technique results in more
compact feature models that are easier to understand and analyse.

Context and Motivation. In some SPL environments, support for manipulating multi-
ple SPLs may be needed. For example, in the consumer electronics domain, the reuse of
software components from different SPLs is commonplace [van Ommering 2002]. Some
of these SPLs may be developed and maintained by external suppliers, and some of the
suppliers may compete to deliver similar products. The same observation can be made
in the semiconductor industry where hardware components from several suppliers are
integrated into a product [Hartmann and Trew 2008]. In the medical imaging analysis on
the grid domain, catalogs of analysis services are built and reused to create new workflows
with strong guarantees on highly variable functional and non functional properties. Across
many fields, there is thus a need for SPL engineering approaches that support defining and
managing variability across different SPLs [Pohl et al. 2005, Buhne et al. 2005].

Managing variabilities across multiple SPLs is especially challenging when the SPLs are
owned by different companies [Pohl et al. 2005, Hartmann and Trew 2008, Hartmann et al.
2009, Bosch 2009]. Support for composing multiple feature models can help domain en-
gineers produce coherent characterizations of valid combinations of features taken from
multiple SPLs. Product (application) engineers also need support for producing valid
product configurations that belong to one or several SPLs. In particular there is a need
to determine which SPLs are able to provide a specific (combination of) feature(s) or not.

Merge vs Reference. Recently proposed techniques support automatic creation of feature
models that integrate features from multiple SPLs with references to them [Schobbens et al.
2007, Hartmann et al. 2009, Reiser and Weber 2007]. Nevertheless, the number of features
and cross-tree constraints in the resulting feature model quickly becomes too large to be
understood by an SPL practitioner or to be analyzed by state-of-the-art reasoning tools. To
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avoid this problem, another solution is to merge similar features (e.g., when features match
and have typically the same name) of input feature models. This solution assumes that
the SPLs to be managed share similar features, but it is often the case when the SPLs are
competing in a specific domain.

In this chapter, we provide some evidence that these reference-based techniques are not
scalable since the feature models they produce are difficult to understand and use in com-
parison with the merging techniques we present. Furthermore we show that the reuse of
state-of-the-art reasoning operations for querying the feature model produced (e.g., for a
comparison with another feature model) is directly applicable and does not require any
adaptation.

Remainder. We first motivate the need for managing multiple SPLs using an example in
which a catalog of image analysis services are built (Section 6.1). We introduce compet-
ing multiple SPLs, an important class of multiple SPLs, in which a valid combination of
features corresponds to at least one product of constituent SPLs (Section 6.2).

To formally define competing multiple SPLs, we describe a semantic foundation that
is expressed in terms of feature models and feature configurations. We show that the se-
mantic foundation can be realized by merge operators, assuming that features match (Sec-
tion 6.3). We demonstrate how the merge operators automatically assist stakeholders in i)
developing an SPL from multiple SPLs, ii) ensuring availability of products across multi-
ple SPLs or iii) evolving existing SPLs. Properties of the merge operators are compared to
reference-based techniques (Section 6.4).

6.1 BACK TO THE RUNNING EXAMPLE: ENGINEERING SERVICES AS SPLS

The elaboration of a feature model to model the variability of SPLs (e.g., services) is an
important engineering activity that involves different tasks. We illustrate them for a SPL
of segmentation services, on Figure 6.1.

This figure contains snapshots of three typical stages of the life-cycle of an SPL : À
shows the variability requirements (described as a feature model) that corresponds to the
range of segmentation services needed by domain users for building their medical work-
flows, Á represents the choices (a configuration of this feature model) made by one user
for selecting the services that meet the requirements of a given workflow (the green check
mark in the box states that a feature is selected, the red cross means that the feature is de-
selected and nothing in the box states that no choice has been made yet). Â corresponds
to the set of services (one or several feature models) that are effectively provided to this
user for implementing the workflow. These services may be home-made or provided by
external suppliers as it is the case in Figure 6.1, where services from different SPLs (from
Supplier 1 and Supplier 2) share common characteristics (e.g., MedicalImage, ModalityAcqui-
sition and Format supported by a service) and can be organized within a catalog of services,
referred as multiple SPLs in the next section.

Figure 6.1 shows that it is necessary to reason about the various interactions that exist
between the many feature models and configurations described in these three snapshots.
For instance, an important consistency check of the SPL is to determine whether all valid
combinations of features offered to the medical imaging expert can be realized by existing
services of at least one supplier [Metzger et al. 2007].



6.2. COMPETING MULTIPLE SOFTWARE PRODUCT LINES 73

An interesting property is that the various kinds of reasoning activities are independent
of the order chosen for obtaining the variability requirements and the catalog of services.
There are typically three generic scenarios. The first one corresponds to the scenario where
an organization only owns or has access to one or several catalogs of legacy services. Then
the construction of the workflow is limited to the use of those services and the variability
requirements of the SPL provided to the users are infered (extracted) from them. We refer
to this situation as the bottom-up1 scenario. This means that the feature model of À is com-
puted from the feature model(s) of Â. The extraction of feature models can be performed
at the product level by building a feature model from existing products’ specification (typ-
ically, a hierarchy of features without variability) or directly at the SPL level by considering
feature models of different SPLs.

The second scenario, called the top-down scenario, consists of using feature models to
perform domain analysis and scoping so that the variation to be supported in the produc-
tion line is identified first. This is the specification of the valid combinations of features
intended to be supported by the family of segmentation services. In such a scenario, vari-
ability requirements (À) is designed before the corresponding software assets to be reused
(Â) are implemented.

The third scenario, which can be qualified as hybrid, is as follows. The variability re-
quirements are deduced from the catalog and then adapted to the needs of the user and,
in the mean time, the user starts from scratch the requirements and confronts them to the
catalog, adapting it if needed. This means than À and Â are built in parallel.

Depending on the scenario, the questions to be answered when reasoning are not the
same but they rely on the same core operators.

6.2 COMPETING MULTIPLE SOFTWARE PRODUCT LINES

In order to meet the requirements determined above, we propose to use multiple
SPLs. Informally, a multiple SPL MSP L is an SPL that manages a set of constituent SPLs
{SPL1, SPL2, . . . , SPLn} and its set of products is described by a feature model FMMSP L

.
At this stage, the semantics of a multiple SPL is left deliberately vague to support a

variety of interpretations, i.e., there are still different ways of combining the constituent
SPLs and their feature models. In particular, the informal definition does not characterize
the combinations of features (i.e., configurations) supported by a multiple SPL MSP L and
allowed by its feature model FMMSP L

.
For example, given a multiple SPL that manages three SPLs described by the three

feature models FMsupp1 , FMsupp2 and FMsupp3 shown in Figure 6.2, a product developer
may want to determine whether the following combination of features Medical Image ,
MRI, T1, Header and DICOM are allowed in the multiple SPL. On the one hand, we can
observe that this combination of features does not correspond to any valid configuration of
FMsupp1 (see Figure 6.2(a)), FMsupp2 (see Figure 6.2(b)) or FMsupp3 (see Figure 6.2(c)). On
the other hand, we can argue that the combination of features can be realized by choosing
features from different feature models, for example, by choosing features Medical Image,
MRI, T1 in FMsupp1 , feature Header in FMsupp2 , and feature DICOM in FMsupp3 . In
this case, it can be seen as a form of compositional multiple SPL, in which each part may
correspond to several SPLs, built by different parties, which are then combined to form an

1We reuse the terminology presented in Section 2.1.3.
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Figure 6.1: Handling multiple variability inputs (e.g., for segmentation services)

integrated software system. This form of multiple SPL raises important issues regarding
its associated semantics, as when choosing one or another feature, one must also reason
on the composition of the software artifacts represented by these features.

In this chapter, we focus on a specific class of multiple SPLs, i.e., competing multiple
SPLs. In a competing multiple SPL, each constituent SPL describes a product that com-
petes with products described in other constituent SPLs, for example, the two SPLs in
Figure 8.3 provide competing Segmentation Services with different features. Each SPL in
a competing multiple SPL defines a set of products offered by a competing supplier (e.g.,
a research group). The SPL of Supplier1 is the only one to propose Segmentation Services
that support Analyze format but cannot process MRI images while the SPL of Supplier2
can process images. In a competing multiple SPL, each combination of features must cor-
respond to an actual product of at least one SPL. A product is a combination of features
in which all features are provided by one and only one supplier. Obviously, it is possi-
ble that for a given combination of features, more than one corresponding product exists.
The configuration {Segmentation, Method, MedicalImage, Clustering, Format, ModalityAcqui-
sition, DICOM, CT} corresponds to two services, one provided by Supplier1 and the other
by Supplier2 (see Figure 8.3).

To formalize the concept of competing multiple SPLs, we define its semantics in terms
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Figure 6.2: Three feature models from different suppliers (adapted from [Hartmann et al.
2009])

of the set of products defined by its constituent SPLs, SPL1, SPL2, . . . , SPLn. FMs are
used to describe the set of products of an SPL, and thus the semantics of a multiple SPL
can be defined as a relationship between the FM of the multiple SPL, FMMSP L

, and the
FMs of the constituent SPLs, FM1, FM2, . . . , FMn. We formally define the semantics of
competing multiple SPLs below.

Definition 12 (Competing Multiple SPL). Each product of a competing multiple SPL, MSP L,
is a product belonging to one of its constituent SPLs SPL1, SPL2, . . . , or SPLn. More precisely,
any configuration of the feature model of MSP L, FMMSP L

, should correspond to at least one valid
configuration of an FM describing the products of MSP L constituent SPLs, that is, FM1, FM2,
. . . , FMn. Formally: ∀c ∈ JFMMSP L

K : c ∈ JFM1K ∨ c ∈ JFM2K ∨ . . . ∨ c ∈ JFMnK

The FM FMMSP L
of Figure 6.3(a) represents the sets of configuration of the competing

multiple SPL that manages the set of SPLs represented by FMs FMsupp1 , FMsupp2 and
FMsupp3 of figures 6.2(a), 6.2(b) and 6.2(c). This is not the case for the FM FMCE of Fig-
ure 6.3(b). A counter-example is given by { Medical Image, MRI, Header, DICOM} which is a
valid configuration of FMCE but is not a valid configuration of either FMsupp1 , FMsupp2

or FMsupp3 .
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Figure 6.3: FM of a competing multiple SPL



76 CHAPTER 6. MERGE OPERATOR AND MULTIPLE FEATURE MODELS

In a competing multiple SPL, some producers build individual, unique, and user-
specific products that others do not. Therefore, it is useful to determine which products of
a competing multiple SPL are unique.

Definition 13 (Product Uniqueness). A product p of a competing multiple SPLMSP L is unique
if p belongs exclusively to either SPL1, SPL2, . . . , or SPLn. Let p be a product ofMSP L described
by a configuration c. p is unique if and only if ∃i ∈ 1...n : ∀j ∈ 1...n, j 6= i ∧ c ∈ JFMMSP L

K ∧
c ∈ JFMiK ∧ c /∈ JFMjK. By extension, an SPL SPLi of a competing multiple SPL MSP L is
unique if all products of SPLi are unique: ∀c ∈ JFMiK,∀j ∈ 1...n : j 6= i ∧ c /∈ JFMjK

For example, SPL1 of Figure 6.2(a) has two unique products: { Medical Image, MRI, T1}
and { Medical Image, MRI, DICOM, T1} ; SPL2 of Figure 6.2(b) has three unique products: {
Medical Image, Anonymized, MRI, Header}, { Medical Image, Anonymized, MRI, Header, T1}, {
Medical Image, Anonymized, MRI, Header, T2} ; SPL3 of Figure 6.2(c) has four unique prod-
ucts: { Medical Image, MRI}, { Medical Image, MRI, DICOM}, { Medical Image, MRI, DICOM,
Anonymized} and { Medical Image, Anonymized, MRI, DICOM, T1, T2}.

Similarly, we can identify common products in a competing multiple SPL, i.e., products
that belong to every constituent SPL of a competing multiple SPL.

Definition 14 (Commonality of a Product). A product p of a competing multiple SPL MSP L

is common if p belongs to SPL1, SPL2, . . . , and SPLn. Let p a product of MSP L described by a
configuration c. p is common if and only if c ∈ JFMMSP L

K ∧ ∀i ∈ 1...n, c ∈ JFMiK

In the example shown in Figure 6.2, there are two common products: { Medical Image,
Anonymized, MRI, T1} and { Medical Image, Anonymized, MRI, T2}.

The following defines the number of products defined by a multiple SPL.

Definition 15 (Number of products). The number of products of a multiple SPL MSP L is de-
noted |MSP L| and is defined as the cardinality of its set of products, i.e., |MSP L| = |JFMMSP L

K|.

In a competing multiple SPL, |JFMMSP L
K| ≤ |JFM1K| + |JFM2K| + . . . + |JFMnK|, that

is, the Inclusion-Exclusion principle of combinatorial mathematics applies. For example,
|JFMMSP L

K| = 18 ≤ |JFMsupp1K|+ |JFMsupp2K|+ |JFMsupp3K| = 28.
The reader can verify that the number of valid configurations of FM FMMSP L

depicted
in Figure 6.3(a) is 18 whereas the number of valid configurations of FM FMCE (cf. Fig-
ure 6.3(b)) is 32.

6.3 MERGING TECHNIQUES TO MANAGE COMPETING MULTIPLE SPLS

The feature model of a competing multiple SPL must precisely characterize a set of valid
configurations allowed by a set of feature models, no more, no less. Ensuring that a multi-
ple SPL meets this requirements makes manual development and management of a mul-
tiple SPL difficult and error-prone. Let us consider Figure 6.3(b). FMCE is an example of
a feature model with an invalid set of configurations (w.r.t. the semantics of a competing
multiple SPL). FMCE is presented2 in [Hartmann et al. 2009] and is a typical example of
a feature model that could have been manually created. As we will see in Section 6.4,

2We just change the features’ names.
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this is the kind of feature model that a user visualizes and manipulates using reference-
based techniques. Even on this small example, the error is quite large, with 43% of the
FMCE configurations that are not valid in FMsupp1 , FMsupp2 , or FMsupp3 . This is not
acceptable for representing a competing multiple SPL.

Moreover a lot of cross-tree constraints between features may exist (e.g., in Fig-
ure 6.3(a), features DICOM and Header are mutually exclusive). It is particularly difficult to
infer the constraints that relate features Anonymized, Header, DICOM, T1 and T2. A man-
ual design of a feature model may lead to an under-approximation or over-approximation
of the set of valid configurations (as an example, see Figure 6.3(b)). Therefore automation
support is required for managing competing multiple SPLs and realizing the semantics
previously defined.

Assumption. It is likely that a set of competing SPLs exhibits a large proportion of sim-
ilar features – products offered by the competing SPLs target the same domain/market
and thus they are likely to have similar characteristics. In this work, we assume that two
features are similar if their names are strictly equal. The same working assumption has
already been used by other SPL researchers, for example, to compare two feature mod-
els [Thüm et al. 2009], to superimpose feature structure trees [Apel et al. 2008] or to merge
feature models [Alves et al. 2006, Segura et al. 2008, Schobbens et al. 2007]. The name of
the feature is often the only discriminant information we can automatically exploit in a
feature model. In certain cases, though, a different vocabulary may have been used dur-
ing the elaboration of the different feature models ; the feature models may have different
level of granularity (e.g., much more details in one of the feature models) ; the features may
refer to different concepts. In this case, a strict equality based on names may be too restric-
tive. Basic edits to feature models (such as the renaming of features) can be performed
or more advanced techniques to align feature models (as proposed in the next chapter)
can be used. We will further discuss the alignment problem in the concluding part of the
document. In our case study, the alignment effort is currently not significant since sup-
pliers rely on a common ontology [Temal et al. 2008] and feature models are views on the
ontology [Fagereng Johansen et al. 2010].

In the rest of this section, we will show how merge operators dedicated to feature mod-
els can provide automated support for managing competing multiple SPLs.

Using the Merge Operators. In Figure 6.4, we consider a representative application sce-
nario of the management of competing multiple SPLs. A scientist designs a medical imag-
ing processing chain and should obtain, at the end, a composition of several services that
fit his/her requirements and that are provided by (different) suppliers in a catalog of ser-
vices. We show how the merge operators defined above can be used to realize such a
scenario.

6.3.1 Building a Catalog of Services

We first focus on the construction of a catalog of services (see A© in Figure 6.4). Several
suppliers (e.g., research teams around the world) provide access to a set of (legacy) services
implementing diverse medical imaging algorithms. The purpose is to provide a catalog of
services describing the features of the services offered to scientists.

Modeling Variability of Services. The first step is to augment the service description, in-
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cluding general information about the supplier providing the service, the kind of algo-
rithm implemented by the service. In addition, service suppliers document the variability
information of each service, i.e., information on the service’s ability to extend, change, cus-
tomize or configure its behavior (e.g., support of network protocols or medical imaging
formats, QoS properties provided in a particular context). The variability information is
described through the set of combinations of features supported by the service and repre-
sented as a feature model. A service may exhibit no variability, e.g, a service may support
only one medical image format and one network protocol. In this case, the service’s fea-
tures are represented as a feature model in which all features are mandatory.

Classification of Services. A catalog of services assists users in finding the most appro-
priate service according to their needs. Due to the large number of service features, there
are various way to classify services. In Figure 6.4, the classification is based on the kind
of algorithm (intensity correction, registration or segmentation) implemented by services.
Three sets of services are grouped together and form three SPLs. Another classification cri-
teria illustrated in Figure 6.4 is the suppliers names: Segm3, Int1 and Reg1 form a fourth
SPL in which all services are provided by Supplier1.

Automatic building of feature models. In this activity, developers identify services that are
to be managed through a unique SPL. Such an SPL should preserve the combinations of
features provided by each service. This activity involves building a competing multiple
SPL which manages a set of services corresponding to the classification that have been
retained. For example, let us consider a competing multiple SPL MSP L that manages a set
of services supp1, supp2 and supp3.

When considering feature models of Figure 6.2, we obtain FMMSP L
of Figure 6.3(a) by

computing
FMMSP L

= FMsupp1 ⊕∪s
FMsupp2 ⊕∪s

FMsupp3

FMMSP L
of Figure 6.3(a) is synthesized using the following Boolean formula:

φresult = (φF Msupp1 ∧ ¬Header) ∨ (φF Msupp2 ∧ ¬DICOM) ∨ (φF Msupp3 ∧ ¬Header)

Similarly, when services exhibit no variability, constructing an SPL from services descrip-
tion can be done by applying the merge operator in strict union mode. In this case, we
represent each service description as a feature model with no variability.

Reasoning about the Catalog. Once the feature model has been constructed, reasoning
operations can be performed. For example, a user may want to determine the number
of products of a competing multiple SPL. According to Definition 15, it is not correct to
compute the sum of number of products of each SPL. The correct way is to use the previous
Boolean formula and count the number of satisfying variable assignments of φresult.

Another interesting operation for users is to determine which services exhibit the same
variability information. It involves determining the set of common products of a compet-
ing multiple SPL, corresponding to the set of configurations represented by FMcommon. It
can be computed as follows: FM1 ⊕∩ FM2 ⊕∩ . . . ⊕∩ FMn = FMcommon. Note that the
set of common products can be rendered as a feature diagram.

Some suppliers propose services with unique combination of features. According to
Definition 13, a unique product belongs necessary to only one SPL. The unique products
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of an SPLi corresponds to the set of configurations of FMuniquei
where

FMuniquei
= FMi ⊕\ (FM1 ⊕∪s

. . . FMi−1 ⊕∪s
FMi+1 ⊕∪s

. . .⊕∪s
FMn)

The set of unique products can then be deduced by computing

FMunique1 ⊕∪s
FMunique2 ⊕∪s

. . . FMuniquen

Evolution of the Catalog. A competing multiple SPL MSP L can evolve over time. For ex-
ample, the set of services provided by a new supplier can be added to a catalog of services.
Instead of specifying from scratch the variability of a new service, we can rely on names
and hierarchies already used in feature models from the current catalog services. This may
notably reduce the alignment problem mentioned above and facilitate the elaboration of
a new feature model trough the reuse of an existing one. When an SPL SPLn+1 is added
into a competing multiple SPL MSP L, we should obtain a new competing multiple SPL
MSP L′ such that

JFMn+1K ∪ JFMMSP L
K = JFMMSP L′ K

Since the merge operator in strict union mode is commutative w.r.t. the set of configura-
tions, the evolution of a competing multiple SPL can be accomplished in an incremental
manner and there is no need to re-compute the merge of all feature models managed by
MSP L.

Interestingly, when FMn+1 is a specialization (resp. generalization) of FMMSP L
(see Def-

inition 10, page 53), then FMMSP L′ = FMMSP L
(resp. FMMSP L′ = FMn+1).

Proof. If FMn+1 is a specialization of FMMSP L
, then JFMn+1K ⊂ JFMMSP L

K and in
particular we have JFMn+1K ∪ JFMMSP L

K = JFMMSP L
K according to set theory.

6.3.2 Using the Catalog of Services

In our scenario, scientists usually compose several services to process medical imaging
data (see B© in Figure 6.4) and define an expected set of features which corresponds to
the application requirements. The catalog of services offers to scientists a set of multiple
competing SPL so that services can be selected and reused. We now explain how merg-
ing techniques can be used to derive a composition of fully parameterized services of the
catalog.

Checking Availability of Services. For each service of the processing chain, a scientist
specifies the desired feature combinations for a service. There is a need to determine which
services of the catalog fit with the requirements of the scientist. For example, a scientist
may want to determine which suppliers from among Supplier1, Supplier2 and Supplier3
(see Figure 6.2) can provide a subset of the configurations represented by the feature model
FMnew of Figure 6.5(a). In this case, the merge operator in intersection mode is applied.

For example, the computation of FMnew ⊕∩ FM2 gives the empty set so that we know
Supplier2 cannot provide any service. On the contrary, Supplier1 can provide two ser-
vices represented by the two following configurations: { Medical Image, MRI, DICOM,
T1, Anonymized} and { Medical Image, MRI, DICOM, T1}. Supplier3 can provide three
services represented by the following configurations: { Medical Image, MRI, DICOM, T1,
Anonymized}, { Medical Image, MRI, DICOM, Anonymized}, { Medical Image, MRI, DICOM}. As
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Figure 6.5: Checking availability: a new feature model and suppliers’ feature model up-
dates of Figure 6.2

a result, the competing multiple SPL is an SPL represented by FMnew and which manages
the SPLs provided by Supplier1 and Supplier3. The set of products provided by Supplier1
is described by FMsupp′

1
= FMnew ⊕∩ FMsupp1 of Figure 6.5(b) in which the feature T2

is no longer proposed while DICOM and T1 are now mandatory features. Similarly, the
set of services provided by Supplier3 is described by FMsupp′

3
= FMnew ⊕∩ FMsupp3 of

Figure 6.5(c).
It is then necessary to determine whether the set of suppliers is able to provide all

products of FMnew. We can compute the union of each set of products that belong to
FMnew and that are provided by each supplier. In this case, the union set should be equal to
the set of products of FMnew and the relation (1) should hold (see below). Using properties
of the merge operators, the relation can be rewritten – see relation (2). We know that
FMsupp1 ⊕∪s FMsupp2 ⊕∪s FMsupp3 = FMMSP L

so that the relation (3) holds:

FMnew = (FMnew ⊕∩ FMsupp1) ⊕∪s (FMnew ⊕∩ FMsupp2) ⊕∪s (FMnew ⊕∩ FMsupp3) (6.1)

= FMnew ⊕∩ (FMsupp1 ⊕∪s FMsupp2 ⊕∪s FMsupp3) (6.2)

= FMnew ⊕∩ FMMSP L (6.3)

Considering the relation (3), we know that

JFMnewK = JFMnewK ∩ JFMMSP L
K

According to set theory, this is equivalent to

JFMnewK ⊆ JFMMSP L
K

As a result, when FMMSP L
is computed (see Figure 6.3(a)), ensuring that the set of

products of FMnew is provided by all suppliers is equivalent to determine whether FMnew
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is a specialization or a refactoring of FMMSP L
. This can dramatically reduce the amount of

time needed when the number of suppliers to consider is large, because there is no need to
do pair-wise compatibility checks between each supplier and the new SPL specification.

Assisting Users. It may happen that some combinations of features are not supported
by any SPL of the catalog of services. For example, when FMnew is a generalization of
FMsupp1 ⊕∪s FMsupp2 ⊕∪s FMsupp3 , it means that some configurations of FMnew are not
expressed by FMsupp1 , FMsupp2 nor FMsupp3 . The computation of missing configurations
may assist the scientist in understanding which services’ features are not supported in the
catalog of services. FMmissing represents the set of missing configurations and is obtained
using the merge diff operator (see Section 5.4):

FMmissing = FMnew ⊕\ (FMsupp1 ⊕∪s
FMsupp2 ⊕∪s

FMsupp3)
= FMnew ⊕\ FMMSP L

Determining if FMnew is a specialization of FMMSP L
can be done by reusing the algo-

rithm presented in [Thüm et al. 2009] or by using the merge in diff mode (see Lemma 1).

Lemma 1 (Merge Diff and Specialization/Refactoring). Let f and g be feature models. f is a
specialization or a refactoring of g if (f ⊕\ g) has no valid configurations

Proof. According to set theory, JfK ⊆ JgK is equivalent to JfK \ JgK = ∅.

Configuration process. In application engineering, scientists require facilities for se-
lecting/deselecting features. For example, when a scientist selects the feature Header
of FMMSP L

(see Figure 6.3(a)), the Boolean formula φresult ∧ Header can be used to
check the consistency of the feature selection or to deduce the possible values (i.e., se-
lected/deselected) for features that have not been previously configured by the user. This
is equivalent to setting the variable Header to true in each Boolean formula φF Msupp1

,
φF Msupp2

and φF Msupp3
(corresponding resp. to FMsupp1 , FMsupp2 and FMsupp3 ) and then

computing the merge in strict union mode:

Header ∧ φresult = Header ∧ ((φF Msupp1 ∧ ¬Header) ∨ (φF Msupp2 ∧ ¬DICOM)
∨ (φF Msupp3 ∧ ¬Header))

= ((φF Msupp1 ∧ Header) ∧ ¬Header) ∨ ((φF Msupp2 ∧ Header) ∧
¬DICOM) ∨ ((φF Msupp3 ∧ Header) ∧ ¬Header)

= ((φF Msupp2 ∧ Header) ∧ ¬DICOM)

In the example, the selection of Header allows one to infer that Supplier2 is the only
supplier able to provide products that exhibit feature Header. An important property is
that FMMSP L

can be used independently during configuration process, i.e., without consid-
ering FM1, FM2, . . . , FMn.

Selecting Services. The last step of the scenario is to obtain a composition of fully pa-
rameterized services. This activity involves mapping scientists’ requirements (i.e., a set
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of selected features) to the features offered by services of the catalog. It is possible that
more than one service matches the requirements. Scientists then have to choose the most
appropriate service. In the scenario illustrated in Figure 6.4, the selection criteria relies
upon suppliers that provide the service: the services Int1, Reg1 and Segm3 all belong to
the same supplier (Supplier1).

6.4 COMPARISON WITH THE REFERENCE-BASED TECHNIQUES

The goal of the merging techniques is to manage multiple feature models. Instead of merg-
ing multiple feature models, another conceivable technique, yet drastically different, is to
reference those multiple feature models. Such reference-based techniques can then be ap-
plied to the application scenario (see Figure 6.4, Section 6.3). We now compare the two
techniques, using the work from Hartmann et al. [Hartmann et al. 2009] for the reference-
based ones.

This approach introduces the Supplier Independent Feature Model (SIFM) in order to se-
lect products among the set of products described by several Supplier Specific Feature Models
(SSFM). Intuitively, the SIFM references several SSFMs thanks to constraints between fea-
tures. In Figure 6.6(a), we show how the SIFM and SSFMs are built considering feature
models of suppliers Supplier1, Supplier2 and Supplier3 of Figure 6.2(a), 6.2(b) and 6.2(c).
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Figure 6.6: Reference-based and merging techniques
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The overall idea is that any feature of SIFM, say feature F, is then related to the fea-
tures F of SSFMs using cross-tree constraints. Additional constraints between SSFMs are
expressed so that features F of SSFMs cannot be selected at the same time. By defining such
constraints between SIFM and SSFMs, Hartman et al. allow users to build a multiple SPL
thanks to several suppliers’ SPLs. The SIFM is designed as follows. First, the root feature
SIFM has two subfeatures: the feature Suppliers and the common root feature of SSFMs
(e.g., in Figure 6.6(a), the common root feature corresponds to Medical Image). Then, the
feature Suppliers contains as many subfeatures as there are suppliers and those features are
mutually exclusive (only one supplier must be selected). The SIFM contains the “super-set
of the features” from all the suppliers and constraints are specified to inter relate features
of SIFM and SSFMs. In addition, cross-tree constraints between features are specified such
that each child feature F of Medical Image is related to the corresponding features F in
each appropriate SSFM thanks to a constraint requiresXor. For example, in Figure 6.6(a),
cross-tree constraints prevent the selection of more than one Anonymized feature of SSFMs.
Finally, a feature Medical Image of an SSFM is a mandatory sub-feature3 of either Supplier1,
Supplier2 or Supplier3.

According to the authors, the approach proposed has the advantage to be realizable by
current feature modeling tools and techniques. We now compare our approach with their
approach.

Semantics. The definition of a competing multiple SPL corresponds to the supplier inde-
pendent problem informally described in [Hartmann et al. 2009].The semantics presented
in Section 6.2 aims at providing a sound framework for the management of multiple SPL
and opens new perspectives to handle new properties (e.g., uniqueness of a product) not
defined in [Hartmann et al. 2009].

Complexity. The approach of Hartmann et al. leads to reasoning on a large set of features
(i.e., all the features of SIFM and SSFMs’) related by a large number of constraints. For
example, when their approach is applied on the feature models of Figure 6.3, the number
of variables of SIFM and SSFMs is equal to 12 + 6 + 6 + 6 = 30 features. The number of vari-
ables to be generated may become an issue in terms of computational or space complexity
and hinder some automated analysis operations of feature models (see Chapter 3). For ex-
ample, if the number of input feature models is equal to 200, each feature model including
200 features, there is need to consider 200 ∗ 200 = 40000 variables, together with a large
number of cross-tree constraints. In the application scenario of Figure 6.4, this limitation
have an impact on the construction and the use of the catalog of services, especially when
a large number of services with a large number of features exist.

User perspective. As noticed in [Deelstra et al. 2005], one of the problems identified by or-
ganizations is the complexity of the product family in terms of number of variation points.
Merging features reduce the number of features to consider and produce more compact
feature models. As a result, the amount of time and effort needed during the configura-
tion process can be reduced. For example, let us consider 10 input feature models with
100 common features per feature models while 20% of the total features are not common

3As in [Hartmann et al. 2009], the mandatory relation can be similarly expressed by a bi-implication between
a feature Medical Image of an SSFM and one of the child features of Suppliers
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(i.e., do not match). In this case, (10 ∗ 100) + ((10 ∗ 100) ∗ 0.2) = 1200 features and 11
feature models have to be considered with the referenced-based technique against only
one feature model and 300 features with the merging technique. For 10 feature models,
60 common features per feature models and with the rather low percentage 50% of non
common features, there would still be (10 ∗ 60) + ((10 ∗ 60) ∗ 0.5) = 900 features on the
reference based side (against 360 features).

Stakeholders use feature model of a competing multiple SPL to design new SPLs
and/or configure products. In such engineering activities, understanding the feature
model is crucial. From a user perspective, the super-set of all supplier features contained in
SIFM over approximates the sets of configurations and hides some constraints to the user
(see Figure 6.6(a)). For example, users cannot understand that features Header and DICOM
are mutually exclusive until considering constraints between SIFM and SSFMs. When
SIFM is solely considered, a large amount of configurations (43%) does not correspond to
any product. In our approach, the set of configurations represented by the merged feature
model can be directly used. As previously, such limitations have an impact on the applica-
tion scenario of Figure 6.4, i.e., on the catalog maintainer and the medical imaging expert
activities. The catalog maintainer has to classify and maintain feature models: it is a cum-
bersome and error-prone activity due to the difficulty to read and understand the feature
models generated by the reference-based techniques. For the same reasons, the medical
imaging expert encounters difficulties when tuning services parameters of the catalog (i.e.,
when configuring feature models).

Incrementality and Modular Reasoning. In our approach, the feature model representing
the set of configurations of a multiple SPL is independent from the other supplier feature
models. This is not the case when using SIFM since when a feature is selected/deselected,
reasoning tools have to consider every SSFM and all constraints before updating SIFM.
Similarly, determining if a subset of products can be provided by suppliers cannot be done
without considering all SSFMs. Moreover the evolution of the multiple SPL (e.g, when a
new supplier is considered) does not imply to update both SIFM and cross tree constraints.
As previously, such limitations have an impact on the application scenario of Figure 6.4,
i.e., on the maintenance and evolution of the catalog of services as well as the selection
from among sets of catalog services.





Seven

Decomposing Feature Models

This chapter shares material with the ASE’11 paper "Slicing Feature Models” [Acher et al.
2011e] and the AOSD’12 paper "Separation of Concerns in Feature Modeling: Support and
Applications" [Acher et al. 2012] (currently under review)

.
The complexity of problems or systems can be greatly reduced and better managed

when broken down into parts that are easier to conceive, understand, program, and main-
tain. "Divide and Conquer" is certainly the best illustration of this principle. It consists
in recursively breaking down a problem into two or more sub-problems of the same (or
related) type, until these become simple enough to be solved directly. The solutions to the
sub-problems are then combined to give a solution to the original problem.

In the previous chapter, we have shown how sub-problems (i.e., feature models) can be
combined. As important is the ability to decompose a problem (i.e., a feature model).

Various decomposition mechanisms have been developed in the software engineering
community, for example, for breaking a large system down into progressively smaller rou-
tines, classes, objects, components or services. Though a multitude of approaches have
been proposed for decomposing artifacts of various natures (textual documents, code,
components, models, aspects, etc.), we should consider the specificities of the formalism
of feature models.

We first wonder what does decomposition mean in the context of feature models (Section 7.1)
. We show that a syntactical extraction has limitations and is thus inadequate. We present
a slicing technique that produces semantically meaningful decompositions of feature mod-
els, given an arbitrary set of features considered to be pertinent by an SPL practitioner.
We discuss and define its semantics in terms of set of configurations and hierarchy (Sec-
tion 7.2). We show how to automatically realize the decomposition and we describe some
interesting properties of the algorithm (Section 7.3).

In Section 7.4, we illustrate how decomposition techniques can be used to manage multi-
ple feature models. In particular, we show how the slicing operator can assist in tedious
and error prone tasks such as automated correction of feature models’ anomalies, update
of feature model views, reconciliation of feature models or reasoning about properties of
inter-related feature models.

7.1 MOTIVATION AND PRINCIPLES

Let us consider the feature model shown in Figure 7.1. Though the feature model is rela-
tively modest in size (12 features and 8 valid configurations) understanding the relations
between features is not straightforward for a human due to the presence of propositional
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Figure 7.1: input feature model

constraints. It can be much worse for larger feature models (see, e.g., Figure 7.5 in page 95)
or for large-scale feature models with hundreds or thousands of features that have been
reported in the literature (see Section 4.2.3).

Managing a large number of features is obviously a problem per se for an SPL prac-
titioner. It becomes even more complex when the legal combination of features are gov-
erned by many and often complex rules. For example, [Lotufo et al. 2010, Berger et al.
2010] found considerably many constraints involving more than one feature, with extreme
cases of constraints containing up to 56 features in the Linux kernel feature model.

It is thus of crucial importance to be able to simplify and automate activities of SPL
practitioners related to the understanding, elaboration, evolution and analysis of (large)
feature models. Dividing feature models into localized and separated parts seem particu-
larly well-suited solution to the problem, because SPL practitioners can focus their atten-
tion on one part at a time.

7.1.1 Why a basic extraction is not sufficient?

We consider the feature model fm0 of Figure 7.1(a). We want to decompose fm0 into
separated feature models, for example, we want to focus on features A, A1, A2, A3, A4,
A5, A6. It is tempting to "copy" the sub-tree rooted at feature A (see fmExtraction1 in
Figure 7.1(b)).

The extraction is purely syntactical. The hierarchy and the variability information mod-
eled in fmExtraction1 are restituted as in the original feature model fm0. In particular,
as there is no cross-tree constraint in fm0 that directly relates features A, A1, A2, A3,
A4, A5, A6, there is no cross-tree constraint in fmExtraction1. This basic strategy has
an important limitation: It does not correctly restitute the legal combination of features as
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Figure 7.2: feature model and its set of configurations

originally expressed in fm0. For example, selecting the features { A, A1, A2, A3, A6 } is
permitted by fmExtraction1 whereas it is not the case in fm0.

Intuitively, the basic extraction fails to infer the transitivity of implications (e.g.,
A3 ⇒ A5 or A4 ⇒ A6). A more accurate decomposition is shown in Figure 7.1(c) (see
fmExtraction2): here selecting the features { A, A1, A2, A3, A6 } is not allowed.

Another important limit of the basic extraction technique is that features should belong
to the same sub-tree. We do not want to restrict as such the decomposition technique.

To summarize, we need a more reliable and generic technique.

7.1.2 Slicing Technique

We propose an automated technique, called slicing, that produces a feature model that
contains only a relevant subset of features.

The overall idea behind feature model slicing is similar to program slicing [Weiser
1981]. Program slicing has been successfully applied in computer programming to elim-
inate all parts from the program that are not currently of interest to the programmer. It
aims at simplifying or abstracting programs by focusing on selected aspects of semantics.
It has several practical applications in program understanding, maintenance, debugging,
testing, differencing, specialization, reuse, and merging. Program slicing techniques pro-
ceed in two steps: the subset of elements of interest (e.g., a set of variables of interest and a
program location), called the slicing criterion, is first identified ; then, a slice (e.g., a subset
of the source code) is computed. In the context of feature models, we define the slicing
criterion as a set of features considered to be pertinent by an SPL practitioner while the
slice is a new feature model.

Examples of Slicing. In the rest of this section, we use the feature model shown in Fig-
ure 7.2(a) to illustrate the semantic properties of the slice operator.

A first example is given in Figure 7.3(a) where the slicing criterion corresponds to the
set of features A, B, C, D, E and F. The hierarchy of fm2 does not alter the structure (i.e.,
parent-child relationships) of the original feature model fm1. It corresponds to a subtree
of the tree of fm1 whose root is feature A. The valid configurations characterized by fm2
corresponds to the valid configurations of the original feature model fm1, when looking
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Figure 7.3: Example of slice operations applied on the feature model of Figure. 7.2(a).

only at the specific features of the criterion. It can be seen as a projection of the relational
algebra on Jfm1K (see Figure 7.2(b)) when the features not included in the criterion ( W, P,
..., U) are discarded. The variability of fm2 is then set to accurately represent Jfm2K. We
can observe that:

• features E and F form an Xor-group in fm2 whereas they are optional features in
fm1. The reason is that features E and F are mutually exclusive in fm1 but it is not
restituted as such ;

• the constraint D implies E has been added to fm2. The reason is that though the
constraint is not part of the original feature model, it is logically entailed by fm1 ;

• the constraint D excludes F is not added to fm2 since the constraint is redundant
(i.e., does not alter Jfm2K). As a result, the order in which constraints are added
to fm2 matters, i.e., different sets of propositional constraints can be added with a
logically equivalent result.

A second example is shown in Figure 7.3(b). The resulting hierarchy of fm3 preserves
the structure of fm1 and features R and S form an Xor-group whereas they originally
form an Or-group in fm1. Jfm3K is equal to the projection onto features R and S of Jfm1K

The third example (see Figure 7.3(c)) is less straightforward as the slicing criteria in-
volves features from different locations of the original feature model fm1. The feature
hierarchy tries to preserve as much as possible the original structure. An important re-
mark is that, given the set of configurations of fm4, neither feature D, E, nor F can be the
root feature. Indeed, a root feature is by definition always part of any set of configuration
and none of the features satisfy this condition (see Jfm4K). As a result, we are obliged to
add a synthetic root.

7.2 SEMANTICS

We define slicing as a unary operation on feature model, denoted ΠFslice
(FM) where

Fslice = {ft1, ft2, ..., ftn} ⊆ F is a set of features.

Definition 16 (Slicing Properties). The result of the slicing operation is a new feature model,
FMslice, such that:

• configuration semantics
JFMsliceK = { x ∈ JFMK | x ∩ Fslice } (called the projected set of configurations);
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• hierarchy
Gslice = (FF Mslice

, Eslice) with FF Mslice
= ((Fslice \ deads(FM)) ∪ synthetics) and

Eslice ⊆ E such thatEslice = {e = (v, v′) | e ∈ E′∧ @ v′′ ∈ E′ : ((v, v′′) ∈ E′∧(v′, v′′) ∈
E′)} where G′ = (F ′, E′) is the transitive closure of Gslice ;

deads(FM) computes the set of dead features of FM (see Definition 8, page 26).

About the synthetic root. We consider that the synthetic root is not part of JFMsliceK and
is only here to ensure the well-formedness of the hierarchy1.

The synthetic root can be removed from Gslice if and only if one or more than one of its
child feature is a core (see Definition 9, page 27) feature:

• in case the synthetic root has two or more than two child features that are core
features, a procedure should choose one – deciding which feature to choose from
amongs the core features is left as open – to replace the synthetic root ;

• in case there is exactly one core child feature fcore, the root feature of FMslice be-
comes fcore. For example, feature A is the root feature of the sliced feature model
of Figure 7.3(a) and feature P is the root feature of the sliced feature model of Fig-
ure 7.3(b).

The synthetic root cannot be removed fromGslice and is necessary (e.g., for the purpose
of visualization) if all its child features are not core features. Figure 7.3(c) gives an example.

Discussion about the semantics. We consider that the slicing operation is applied to the
feature model fm1 shown in Figure 7.2(a) using the set of features T, S, E, D as slicing
criterion. Formally:

Π T,S,E,D (fm1)

As we did for the compositional operators, the semantics of the slicing operator has
been defined in terms of set of configurations and hierarchy. The semantics controls that
the feature models shown in Figure 7.4(a) and Figure 7.4(b) are not correct. Though the set
of configurations is correctly restituted ({ {D, E, T}, {S, T}}), the hierarchy is not consistent
with the properties exposed in Definition 16. From an ontological perspective, one may
argue that the hierarchy does not correctly organize the features. For example, it may be
preferable to move feature D as a child feature of feature E. However, due to the lack
of knowledge about the actual meaning of features, it is out of the scope of the slicing
operator. This is the role of an SPL practitioner to reorganize the hierarchy if needs be.

Another important remark is that there may exists more than one feature model that are
consistent with the semantic properties of the slicing operator. The feature models shown
in Figure 7.4(c) and Figure 7.4(d) correctly restitute the expected set of configurations and
hierarchy but the feature groups differ. In the feature model of Figure 7.4(c), features S
and E form a Xor-group whereas it is not the case in the feature model of Figure 7.4(d)
(features S and D form a Xor-group). We do not find any criteria that can justify the choice
of one feature group in preference to another.

Summary. We discuss through different examples the semantics of the slicing operator and

1Its particular status should be treated as such by a tool (e.g., when encoding the feature model into a propo-
sitional formula). This is similar to what have been discussed with the aggregate operator (see Section 5.3).
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we justify our different choices. The proposed semantics (see Definition 16) focuses on the
primary aspects of feature models (set of configurations plus hierarchy). The semantics
has been intentionally left open for some other aspects (e.g., how to group features? which
constraints to add?).

7.3 ALGORITHM

Our previous experience in the merging of feature models has shown that syntactical strate-
gies have severe limitations to accurately represent the expected set of configurations, es-
pecially in the presence of cross-tree constraints (see Chapter 5). The same observation
applies for the slicing operation so that reasoning directly at the semantic level is required.
The key ideas of the proposed algorithm are to i) compute the propositional formula repre-
senting the projected set of configurations and then ii) to apply propositional logic reason-
ing techniques to construct a feature model (including its hierarchy, variability information
and cross-tree constraints) from the propositional formula.

7.3.1 Formula Computation

For a slicing FMslice = Πft1,ft2,...,ftn
(FM), the propositional formula corresponding to

FMslice can be defined as follows:

φslice ≡ ∃ ftx1, ftx2, . . . ftxm′ φ

where ftx1, ftx2, . . . ftxm′ ∈ (F \ Fslice) = Fremoved.
The propositional formula φslice is obtained from φ by existentially quantifying out vari-

ables in Fremoved (see below for an illustration). Intuitively, all occurrences of features that
are not present in any configuration of FMslice are removed by existential quantification in
φ. The slicing can be seen as a safe removal of a set of features as existential quantification
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removes a variable from a propositional formula without affecting its satisfiability — in
particular, dead features are removed.

Definition 17 (Existential Quantification). Let v be a Boolean variable occurring in φ.
Then φ|v (resp. φ|v̄ ) is φ where variable v is assigned the value True (resp. False).
Existential quantification is then defined as ∃v φ =def φ|v ∨ φ|v̄ .

An example of existential quantification is given in Appendix .2.

7.3.2 From formula to feature model

The translation of the propositional formula φslice to a feature model is largely similar to
the technique described for the merge operator in Section 5.5. In the two cases, we have the
propositional formula and we already know what the resulting hierarchy is. Therefore the
algorithm remains the same. We first compute the hierarchy À, we then set the variabil-
ity information (mandatory/optional, Xor and Or-groups) Á and finally the constraints
(implies/excludes/others) Â.

À Hierarchy Computation. Let G be the hierarchy of the input feature model to be
sliced, FM . The synthetic root is added to G so that synthetics is the new root of G. We
obtain Gslice, the hierarchy of the resulting sliced feature model, by incrementally remov-
ing all features of Fremoved in G. In case the feature is a leaf, the feature and its associated
edge are simply removed. In case the feature is not a leaf, the feature and all associated
edges are removed while its children are connected to its parent feature by adding new
edges.

Á Mandatory and Feature Groups. At this step, all features, except root, are currently
optional (see Definition 1, page 23). We compute the implication graph, noted Islice, of the
formula φslice over Fslice.

Islice is a directed graph G = (V,E) formally defined as:

V = Fslice E = {(fi, fj) | φslice ∧ fi ⇒ fj}

We use Islice to identify biimplications and thus set mandatory features together with
their parents (i.e., setting EMAND). For feature groups, we reuse the prime implications
method proposed in [Czarnecki and Wąsowski 2007] and thus set FXOR and FOR. An
important issue is that a feature may be candidate to several feature groups (which is not
allowed by feature diagrams). We use information of the original feature model to favor
features that were initially grouped.

Â Constraints. The set of implies constraints can be deduced by removing edges of
Islice that are already expressed in the feature diagram (e.g., parent-child relations). Sim-
ilarly, excludes constraints that were not chosen to be represented as an Xor-group are
added. When adding constraints, we control that the constraint is not already induced by
the feature model. The feature diagram plus the implies/excludes constraints may still be
an over approximation of φslice. The complement corresponds to ψslicecst .

7.3.3 Some Properties of the Algorithm

Anomaly free. Benavides et al. identify different kinds of anomalies (also called errors)
in feature models, for example, dead features, false optional features, or redundancies
(see [Benavides et al. 2010] or Section 3.1.2). The slicing algorithm we propose ensures, by
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construction, that there is no dead feature, correctly detect mandatory features and avoids
redundancy in the representation (e.g., we add an implies/excludes constraint only if it is
not already induced by the feature model). Hence, we guarantee that the resulting sliced
feature model does not contain anomalies.

Non identity property. When we apply the slicing operator to a feature model using F as
slicing criterion, the resulting feature model is logically equivalent to the original feature
model but the variability information (e.g., FXOR) can be different. An example is given
by the feature model of Figure 7.2(a) when some Or-groups would be Xor-groups in the
sliced feature model.

Slice as a Corrective Operator. The anomaly free and non identity properties shows that
the slice operator can be used as an automated technique to correct anomalies of feature models
while preserving the original set of configurations and feature hierarchy. Moreover the
corrective modifications applied to the original feature model can be detected and reported
to an SPL developer so that he/she can understand the anomalies.

7.4 ILLUSTRATIONS

In this section the objective is to convince the reader that coupling the use of composi-
tional operators with slice allows to address some issues that could not be easily achieved
without it such as: updating views interacting one with the others after insertion of new
constraints, extracting new views from an existing system, reconciling two views of a sys-
tem or checking that the specification of a problem can be handled by current capabilities
of the implementation platform. In the following, all views, system, problem specification
or platform implementation are seen as one or several feature models.

7.4.1 Updating Views

In Figure 7.5, a registration service SPL is described through different views: information
about the deployment on the grid, internal algorithms, the supported communication pro-
tocols and the type of handled medical images. These feature models can then be used
to check consistency between composed services in the workflow and to facilitate their
coherent configurations.

In practice, the different feature model views of a service are not independent. The
workflow designer has to add constraints to enforce interactions between the feature
model views (see bottom part of Figure 7.5). Determining the impact of these constraints
on each feature model view cannot be done manually or even automatically with current
techniques and tools. We rely on the corrective capabilities identified in previous section
to perform the update of the different feature model views. Using the slice operator, it
simply consists in i) aggregating the four feature models into a single one (fmService) with
constraints mapped on it, ii) invoking slice four times producing as much sliced feature
models, the slicing criteria being respectively the features of each of the four feature mod-
els.

As a result, figures 7.6(a) and 7.6(b) correspond to the sliced feature model with respec-
tively the features of the feature models FMMIsupport and FMalgo. The two other feature
models are not impacted by the constraints mapped on fmService.
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Figure 7.5: Medical Imaging Service: Variability and Concerns

7.4.2 Supporting Multiple Perspectives

On the same example, the slice operator can be used to extract other views (or perspectives)
of a service. In Figure 7.7, we capture expertises related to security features or to the med-
ical imaging domain. Two slice operations are applied below and compute two feature
model views, stored into fmViewMI and fmViewSecurity. The slicing criterion used to com-
pute fmViewMI (resp. fmViewSecurity) contains features from the feature models FMMI ,
FMalgo and FMgrid (resp. FMMI , FMproto and FMgrid). The slice guarantees that all the
interactions existing with other feature model views are still enforced.
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7.4.3 Reconciling Feature Models

When managing a set of feature models, the different stakeholders involved in the SPL
development may have to put together very similar variability information but with a dif-
ferent structure. For example, as already noted in the previous chapter, different suppliers
in the medical imaging domain (scientists, research teams, companies, etc.) provide imag-
ing services and may use different hierarchies, concepts, vocabulary, etc. when elaborating
the feature models.

Let us consider two feature models, fmMI1 and fmMI2, in Figure 7.8.
The two feature models differ. In particular, features Open, Proprietary, NiftiI, NiftiII

are present in fmMI1 but not in fmMI2. Intuitively, more structure and details are mod-
eled in fmMI1. As a result, a comparison (see Definition 10, page 53) or a merging of
the two feature models leads to counter intuitive results, i.e., the intersection of the two
configuration sets is empty. Looking at the two feature models, some configurations seem
to correspond, for example, the valid configuration {MedicalImage,DICOM} of fmMI2
with the configuration {MedicalImage,Open,DICOM} of fmMI1. We thus need to recon-
cile (or align) the two feature models and allow an SPL practitioner to align in a coherent
way information from fmMI1 and fmMI2.

Using the slice operator, we simply remove features of fmMI1 i) that structure the fea-
ture model (i.e., features Open, Proprietary) and ii) that can be abstracted by a single feature
(i.e., Nifti abstracts features NiftiI and NiftiII). Then, the merge operator, for instance, can
be used (see Figure 7.8).

7.4.4 Reasoning about Two Kinds of Variability

In SPL engineering, two kinds of variability are usually distinguished (e.g., see Sec-
tion 3.2.1 or [Pohl et al. 2005, Metzger et al. 2007]): software variability, hidden from cus-
tomers (also called internal variability), as opposed to product line (PL) variability, visible
to them (also called external variability).

Software variability and PL variability can be seen as two concerns of an SPL. Metzger
et al. proposed a formal and concise approach for separating PL variability and software
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Figure 7.7: Another decomposition strategy and set of views

variability and enabling automatic analysis [Metzger et al. 2007]. The two concerns are
modeled as two feature models and inter-related by constraints. The authors mention sev-
eral properties that should be checked when reasoning about the two kinds of variability.
We revisit here the approach defended in [Metzger et al. 2007]. We show how the operators
can be combined to support separation of concerns in this context.

Realized-by property. An important property of an SPL is realizability, that is, whether
the set of products that the PL management decides to offer is fully covered by the set of
products that the software platform allows for building.

In Figure 7.9, we want to ensure that for each valid selection/deselection of features of
fmP L performed by a customer, there exists at least one corresponding software product
described by fmsoftware. The PL variability is documented using fmP L, the software vari-
ability is documented using another feature model (see fmsoftware) and the two feature
models are related through constraints (see mapSoftP L). Note that the mapping between
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Figure 7.8: Slicing (À) to reconcile feature models and allow, e.g., merging (Á)

features of fmP L and fmsoftware is not necessarily one-to-one.
To do so we first reason about the relationship between fmsoftware and fmP L. We

compute fmG, the aggregation of fmP L and fmsoftware together with the constraints
mapSoftP L. In terms of feature models, the realizability property can be formally ex-
pressed as follows:

∀cp ∈ JfmP LK, cp ∈ JΠFP L
(fmG)K (7.1)

with FP L the set of features of fmP L.
Intuitively, if the restriction of the PL features to JfmGK is equivalent to the original

JfmP LK, the constraints mapSoftP L has no effect on the PL part of fmG and thus the real-
izability property holds. Otherwise some products cannot be realized in the platform. The
property of Equation 7.1 can then be implemented with the slice operator and, if needs be,
one can also enumerate all products that cannot be realized. More precisely, Equation 7.1
implies to check if fmP L is a refactoring of ΠFP L

(fmG).
Using the aggregate, slice and merge diff operators, we can automatically check this

property. We first slice the aggregated feature model fmG by only including FP L, the
set of features of fmP L. The slice produces a new feature model, denoted fmPLPrime.
Formally:

fmPLPrime = ΠFP L
(fmG)

Then, we compare the resulting feature model, fmPLPrime, with the original PL fea-
ture model, fmPL. If fmPLPrime is not a refactoring of fmPL, the realizability property
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Figure 7.9: Software and PL Variability (adapted from [Metzger et al. 2007])

is violated since some existing products of fmPL are removed in fmPLPrime and no
product is added.

Finally, we can compute the set of products that are in fmPL but not in fmPLPrime
using the merge operator in diff mode. The merge operator produces fmP LDiff

Back to the example of Figure 7.9, we obtain that the realizability property does not
hold and that three products proposed to customers cannot be realized by the platform:

JfmP LDiff K = {{V 1, V 3, V 2, V P1}, {V 1, V P1}, {V 3, V P1}}
The merge in intersection mode of fmPL and fmPLPrime, denoted fmP LInter, allow

one to determine that only the following two products can be realized:
JfmP LInterK = {{V 1, V 3, V P1}, {V 2, V 3, V P1}}

Non useful products. A product is useful if it is a possible realization of a PL member. As
argued in [Metzger et al. 2007], the list of non-useful products is a symptom of unused
flexibility of the software platform. It can be on purpose, for example, justified by future
marketing extensions. Formally, all products are useful if the following relation holds:

∀cp ∈ JfmsoftwareK, cp ∈ JΠFsoftware
(fmG)K

The usefulness property can be seen as the "symmetric" of the realized-by property.
Therefore similar techniques can be applied.

7.4.5 Slicing-based Merge Implementation

We show how the slicing operator can be used to provide an alternative way of imple-
menting the merge operator dedicated to feature models described in Chapter 5.

We rely on the same example used in Section 6.4.
We want to merge in strict union mode the feature models FMsupp1 , FMsupp2 and

FMsupp3 of Figure 6.2 (see page 75). There are identified as I0, I1 and I2 in Figure 7.10. We
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reuse the reference-based technique described in Section 6.4 and we obtain FMref . The
constraints are specified as follows:

• the term atmost1 (C1, ..., Cn) is equivalent to ∧i<j(¬Ci ∨ ¬Cj)
• each feature name is prefixed and unique in FMref (e.g., I1 . Format correspond to

the feature Format of the feature model I1) but for the purpose of readability, the
original name of features is depicted in the boxes.

The idea is to slice FMref using as a slicing criterion the set of features of the reference
feature model (called SIFM in [Hartmann et al. 2009]), that contains the “super-set of the
features” from all the input feature models (green features in Figure 7.10). The resulting
sliced feature model is equal to the feature model produced by the merge operator (see
Figure 7.11). Formally:

Π MedicalImage,Anonymized,MRI,Header,DICOM,T 1,T 2 (FMref ) = I0 ⊕∪s
I1 ⊕∪s

I2
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7.5 COMPARISON WITH OTHER SOLUTIONS

We now briefly discuss how we extend previous approaches and how they can benefit
from our slicing operator.

We apply the techniques described in Section 7.4.4 using the larger example described
in [Metzger et al. 2007]. We successfully retrieved the same results, but our approach is
more efficient since we do not enumerate configurations/products as they do. Moreover,
high-level operators (slice, aggregate, compare, merge) facilitate the reasoning realization
and offer a systematic solution for SPL practitioners when understanding and maintaining
the two feature models.

Thüm et al. [Thüm et al. 2009] presented an automated and scalable technique to char-
acterize the kinds of edit between two feature models. An original property of the tech-
nique is that they distinguish abstract features from concrete features when reasoning.
Abstract features are, in their work, non-leaf features. We consider this is the role of an
SPL practitioner to explicitly determine which features are abstract (as shown in the exam-
ple of Section 7.4.3, abstract features are not necessary non-leaf features). Our technique is
thus more general and realize the vision of [Schobbens et al. 2007] that makes the distinc-
tion between features that are of interest per se (i.e., that will influence the final product)
and others.

In the context of feature-based configuration, several works proposed techniques to
separate the configuration process in different steps or stages[Mendonca and Cowan 2010,
Hubaux et al. 2009]. Our work is complementary since we propose techniques to decom-
pose feature models according to different perspectives or role of stakeholders involved
in the configuration process. Hubaux et al. provide view mechanisms to decompose a
large feature model [Hubaux et al. 2010a]. However they do not propose a comprehensive
solution when dealing with cross-tree constraints. They also consider that the root feature
should always be included, which is a limitation not imposed by our approach.
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In the previous part, we have laid the foundations of managing multiple feature mod-
els, but an operational solution is still needed to support SPL practitioners activities. Our
proposal is a language dedicated to the management of feature models, called FAMILIAR
(for FeAture Model scrIpt Language for manIpulation and Automatic Reasoning).

In Chapter 8, we introduce FAMILIAR (rationale, syntax, set of operators, etc.) and we
illustrate how the language can be used to realize a non trivial scenario in which multiple
SPLs are managed.

In Chapter 9, we describe the language implementation and we evaluate the perfor-
mance of two important operators, merge and slice.
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A Domain-Specific Language for Managing
Feature Models

This chapter shares material with the SAC’11 paper "A Domain-Specific Language for
Managing Feature Models" [Acher et al. 2011b], the VaMoS’11 paper "Managing Feature
Models with FAMILIAR: a Demonstration of the Language and its Tool Support" [Acher
et al. 2011d] and the ASE’11 paper (tool demonstration) "Decomposing Feature Models:
Language, Environment, and Applications” [Acher et al. 2011c]

In Part II, we have presented a set of operators (insert, aggregate, merge, slice) to support
composition and decomposition of feature models. We have outlined how the operators
can be combined to realize complex management tasks.

To support large scale management of feature models, a more comprehensive and oper-
ational solution, though, is needed. We mention at several places of Part II that reasoning
facilities and other operators should be developed. For example:

• when an aspect feature model is inserted into a base feature model, one may want to
reason about the new set of configurations ;

• when two feature models are aggregated, one may want to determine if the resulting
feature model is not void ;

• before merging two or more than two feature models, one may need to reconcile
them by renaming features or removing unnecessary details ;

• when a slice operation is performed on a feature model, one may want to configure
the sliced feature model.

In addition, using these operators all alone is very restrictive: What is the use of aggre-
gating two feature models if you cannot reason about the satisfiability of the composition?
What is the use of merging two feature models if you cannot reason about the new set of
configurations? We rather need to combine these operators and perform sequences of op-
erations to realize complex reasoning tasks. Several examples described in Part II suggest
that sequences of different manipulations are needed, for instance, when making evolve
feature model structures and their configurations, inserting new features, renaming fea-
tures, extracting sub-feature models while maintaining constraints, and reasoning about
intermediate results during composition. There is thus a need to provide SPL practitioners
with the means to control when and how (de-)composition and analysis mechanisms are
applied, and with the capability to replay and reuse (de-)composition and analysis proce-
dures.

To summarize, we need both a more comprehensive set of operators and practical
means to perform sequences of operations.
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In Section 8.1, we explain why we chose to design a domain-specific language (DSL) and
we discuss other alternatives.

In Section 8.2, we give an overview of the DSL named FAMILIAR (for FeAture Model
scrIpt Language for manIpulation and Automatic Reasoning). We present the main con-
structs of the language and the new operators we have introduced in addition to the com-
position and decomposition mechanisms.

In Section 8.3, we describe an application of the DSL on a larger scale problem that
involves manipulating multiple feature models with different scripts.

8.1 WHY A DOMAIN-SPECIFIC LANGUAGE?

There are at least three possible solutions to meet the requirements above. One approach
is to reuse existing feature model development tools and editors. The other two involve
using a language, either general-purpose or domain-specific.

8.1.1 Textual vs Graphical Approach

Several graphical feature model editors are currently available, and some do
provide support for managing some aspects of feature model development like
pure::variants [pure::variants 2006], FeatureIDE [Kästner et al. 2009a], SPLOT [Men-
donca et al. 2009a], etc. (see Section 3.3). For large scale management, pure::variants is
a commercial tool with good support for binding to other models and for code genera-
tion. FeatureIDE is a comprehensive environment that interconnects with different feature
model management tools and has a Java API to manipulate feature models. Integration
of reasoning tools is thus facilitated, for example, a tool for feature model edits [Thüm
et al. 2009] has been integrated. Nevertheless, current tools do not fully support the com-
position or decomposition of several separated feature models. A conceivable solution
would be to integrate our feature model composition operators (insert, aggregate and
merge) as additional functionalities inside a mainstream graphical editor. Our example
(and our case studies, see Part IV) indicate that manipulating several feature models with
composition operators requires support for replaying sequences of operations, observing
properties along its manipulations, and organizing all these actions as reusable parts. We
thus identify this as a requirement for a textual, executable language, close to common
scripting languages. As already mentioned, such a script language should provide i) basic
sequencing of feature model operations, ii) access to feature model internals, iii) reasoning
operations and iv composition and decomposition mechanisms. A textual script performs
a sequence of operations on feature models. Such operations are reproducible and reusable.
Obtaining the same properties in a graphical editor requires an additional effort, for ex-
ample, the implementation of an undo/redo system and serialization of the sequence of
operations. This is very close to what GUI scripting languages do with macro-commands.
This could have been the only requirement of the FAMILIAR language, but using the lan-
guage, we believe its textual form favors readability of the specified operations, and more
usability and productivity when dealing with compositional operations on feature models.
On the other hand, graphical visualization has proved to assist users: This does not avoid
the possibility to also provide graphical counterparts built on top of the textual language,
as in many other domains (see Chapter 9).
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8.1.2 Domain-Specific Language vs General Purpose Language

As editors like FeatureIDE and frameworks such as FAMA (see Section 3.3) provide an
API, another conceivable solution would be to build an API extension in a mainstream
programming language in order to provide support for using composition operators and
other feature model management operations. While this may be a feasible solution, it
would imply many repetitive and error-prone actions, except if the API have been created
thinking in terms of simplicity, readability and focusing on the domain of feature models.
In this case, one can argue that the API is an internal1 DSL, written on top of a host language
(e.g., Java)

A DSL, being internal or external, should allow a feature model user to more quickly
build the code they need to manipulate feature models.

In the previous chapters, we use a mathematical notation to combine operators. Ap-
propriate or established domain-specific notations are usually beyond the limited user-
definable operator notation offered by general purpose languages. An external DSL seems
particularly adequate in this case, as it would provide only the necessary expressive power
for anticipated feature model manipulations.

The facilities provided to the feature model users must allow the description of complex
operations dedicated to feature models, in both a compact and readable way, while being
understandable by an expert who may not necessarily be a software engineer. In addition,
such an external DSL should be used more easily by feature model users as the learning
curve is expected to be more favorable.

To conclude the discussions, the predominant idea is that we need a textual language
dedicated to the domain of feature models. TVL [Classen et al. 2010a] (for Textual Variabil-
ity Language) belongs to this category but its focus is to specify feature models and is thus
inadequate regarding the requirements identified above.

8.1.3 The Domain of Propositional Feature Models

We have argued that a DSL seems particularly adequate to the needs of managing feature
models. The decision to develop a new DSL (e.g., when?, why? and how?) is a difficult
one as it involves both advantages/disadvantages or risks/opportunities [van Deursen
and Klint 1998, Mernik et al. 2005, Fowler 2010]. Essential to this decision is the notion of
domain. We further discuss the domain of feature models.

The domain of automated analysis. Since the introduction of feature models, the auto-
mated analysis of feature models is an active area of research and is gaining importance
in both practitioners and researchers in the SPL community. The operators we have de-
veloped in Part II, and thus the language we want to create, are obviously in that domain.
[Benavides et al. 2010] conduct a literature review and claim that:

"From the analysis of current solutions, we conclude that the analysis of feature
models is maturing with an increasing number of contributions, operations, tools and
empirical works."

1The external/internal dichotomy is generally used to characterize DSLs. An external DSL is a completely
separate language and has its own custom syntax. An internal DSL is more or less a set of APIs written on top of
a host language (e.g., Java). Internal DSL is limited to the syntax and structure of its host language. Both internal
and external DSLs have strengths and weaknesses (learning curve, cost of building, programmer familiarity,
communication with domain experts, mixing in the host language, strong expressiveness boundary, etc.) [Fowler
2010]
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Hence the development of a DSL integrating automated analysis techniques seems par-
ticularly adequate – as argued by [van Deursen and Klint 1998], "a prerequisite to devel-
oping a DSL is mature domain knowledge." Furthermore, DSLs are considered as "enablers
of reuse” [Mernik et al. 2005] and there is a clear opportunity to reuse operations already
defined in the domain.

Domain analysis. In the analysis phase of DSL development, the problem domain is iden-
tified (descriptions of domain concepts and domain terminology (vocabulary), domain
definition defining the scope of the domain) and domain knowledge is gathered. The do-
main concepts we have identified are enumerated below:
feature model: the primary entities we want to manipulate and reason about ;
features: a feature model is composed of features ;
feature name: features are characterized by their names (string-based representation) ;
hierarchy: the essence of feature modeling is hierarchy and the way features are organized

;
variability information: a feature may be optional, mandatory or be part of a feature

group (Or- or Xor-group) ;
constraint: features (and by extension feature models) may be related through constraints,

expressed in propositional logic ;
configuration: a feature model controls the legal combinations of features, called feature

configurations (or configurations for short). An SPL practitioner usually selects and
deselects features during a configuration process until there is no choice to perform ;

propositional formula: to reason about properties of a propositional feature model, we
need a logical representation ;

number: properties of a feature model include the number of valid configurations or some
metrics (e.g., commonality) ;

We can notice that the number of concepts rather small. This is a good point for the
DSL as it will focus on a limited set of concepts.

Scoping the domain. The term propositional feature model is used to restrict the scope of
feature models. For example, some authors argue that a feature model should come with
feature descriptions (including binding times, priorities, stakeholders, etc.) or with feature
attributes (e.g., numerical attributes). When including attributes in feature models the
analysis becomes more challenging because not only attribute-value pairs can be contem-
plated, but more complex constraints, beyond propositional logic, can be specified. Fur-
thermore this type of relationships can affect operations of analysis and can include new
ones. We do not consider feature attributes and restrict the scope of the domain to propo-
sitional constructions and operations. Similarly we do not consider cardinality-based fea-
ture models [Czarnecki et al. 2005a, Michel et al. 2011]. In SPL engineering, feature models
are usually mapped to other artefacts of an SPL (see Chapter 2). We do not consider the
relationship between feature models and other artefacts, i.e., the domain is restricted to
feature models.

Summary. Though there is still an active research in feature modeling, the domain of
propositional feature models is well established. There is an opportunity for the DSL to
reuse operations already defined in the literature or developed in the context of this the-
sis. The DSL should provide a domain-specific notation to manipulate a restricted set of
concepts as well as a support for the composition and decomposition operators.
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8.2 LANGUAGE IN A NUTSHELL

The FAMILIAR DSL is an executable scripting language that supports manipulating and
reasoning about feature models. The next subsections will detail and illustrate the main
constructs of the language.

8.2.1 Types and Variables

FAMILIAR is a typed language that supports both complex and primitive types. The various
types supported by the language have been chosen according to the domain concepts iden-
tified in the previous section. Variables representing complex types record a reference to
the data whereas other variables record the data value itself. (The notions of reference and
value are similar to the ones used in programming languages.) Complex types are Feature
Model, Configuration, Feature, Constraint, etc. or generic Set which represents container val-
ues. Primitive types include String (e.g., feature names are strings), Boolean, Enum, Integer
and Real. An example script that illustrates typing is given below:

1 mi1 = FM ( MedicalImage: Modality Format Anatomy [Anonymized];
2 Modality: (PET | CT); Format: (DICOM|Nifti); Anatomy: Brain;)
3 mi2 = FM ( MedicalImage: Modality Format Anatomy [Anonymized];
4 Modality: (PET | CT); Format: (DICOM|Nifti); Anatomy: Brain;)
5 b1 = mi1 eq mi2 // b1 is true
6 b2 = mi1 == mi2 // b2 is false
7 str = "PET" // str records the value "PET"
8 fmSet = { mi1 mi2 } // fmSet records a reference to a set

Lines 1-4 define two variables of type Feature Model: mi1 and mi2. For variables with
complex types we may need to compare either the reference or the content of the recorded
data so that we propose two operators. Lines 5 and 6 illustrate the use of content equality
(eq) and reference equality (==) on complex types. Lines 7 and 8 show assignments to
variables of type String (str) and Set (fmSet is a set of feature models). Note that for
the variable str, the use of content or reference equality would return the same result
which corresponds to content equality. Types have accessors for observing the content of
a variable. The example below illustrates the use of accessors :

1 mi3 = FM ( MedicalImage: Modality Format Anatomy Anonymized;
2 Modality: (MRI | CT); Format: Analyze; Anatomy: Kidney;)
3 f1 = parent MRI // f1 refers to feature named ’Modality’ in mi3
4 f2 = root mi3 // f2 refers to feature named ’MedicalImage’ in mi3
5 s1 = name f2 // s1 is a string "MedicalImage"
6 fs = children f1 // set of features named ’MRI’ and ’CT’ in mi3
7 nfs = size fs // 2

In line 3, variable f1 records a reference to feature Modality (the parent of feature MRI).
We consider that features are uniquely identified by their names in a feature model (as
stated in Chapter 3). In line 4, variable f2 contains a reference to the feature MedicalImage
(the root of the feature modelmi3). The remaining lines (5-7) illustrate operations returning
i) the name of a feature, ii) the set of direct subfeatures of a given feature and iii) the number
of elements of a set.
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8.2.2 Importing and Exporting Feature Models

We provide multiple notations for specifying feature models (SPLOT,
GUIDSL/FeatureIDE, a subset of TVL, etc.) A FAMILIAR user can:

• load feature models in those notations (using FM constructor) ;
• serialize the feature models in those notations (using serialize).

Internal notation. FAMILIAR also provides a concise notation, largely inspired from Fea-
tureIDE and feature-model-synthesis (see Section 9.1.2):

1 fmFoo = FM (A : B C D; D : (E|F|G); C : (H|I|J)+ ; (C implies I) ; )
2 fmFoo2 = FM ("fmFoo2.tvl")
3 fmFoo3 = FM ("fmFoo3.m")
4 serialize fmFoo into SPLOT

In the example of line 1:
• A is the root ;
• B, C and D are child-features of A: B and C are mandatory while D is optional ;
• E, F and G form a Xor-group and are child-features of D ;
• H, I, and J form an Or-group and are child-features of C ;
• C implies I corresponds to a propositional constraint of the feature model.

Other notations. Feature models can also be imported using other notations and the same
FM constructor (in line 2 we import a TVL model while in line 3 we import a feature model
in FeatureIDE notation). Line 4 gives an example of a serialization.

8.2.3 Operations

Modifying feature models. The language provides some basic operators for renaming and
removing features in feature models. Renaming can be useful when composing or com-
paring feature models that use different terminology for the same concept (i.e., feature).
The following illustrates how features can be renamed:

1 oldFeature = parent Analyze // ’Format’ feature of mi3
2 newName = strConcat "MI" (name oldFeature)
3 b1 = renameFeature oldFeature as newName // aligning terms
4 assert (b1 eq true) // assert (b1) is equivalent

In lines 1-3, the feature DICOM of feature model mi3 is renamed to MIFormat by con-
catenating the string MI with the old name Format. The operator assert in line 4 stops the
program with an appropriate error message if the renaming is not successful (i.e., b1 is
false). A renaming is not successful if the feature to be renamed (e.g., oldFeature in the
previous example) does not exist. Similarly, the operator removeFeature takes a feature
as an argument and removes the feature and its descendants from the feature model it be-
longs to (see Section 8.2.6 for an example). It also returns true or false depending whether
it is successful or not.

Identifier resolution. In line 1 of the script above, the identifier Analyze is used. It cor-
responds to the feature Analyze of the feature model mi3. It could be expressed more
explicitly as follows:
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1 oldFeatureBis = parent mi3.Analyze // ’Format’ feature of mi3
2 conflictingFeature = parent DICOM // feature present in mi1 and mi2

In FAMILIAR, an identifier may refer to a variable identifier (e.g., oldFeatureBis) or to a
feature in a feature model. It may happen that two features with the same identifier are
present in two different feature models (see line 2). In this case, the script stops and the
error is reported to the FAMILIAR user.

Handling feature model configurations. The language also allows FAMILIAR users to create
feature model configurations, and then select, deselect, or unselect a feature. To select a
feature means that the configuration includes the feature. To deselect means that it will not
be part of the configuration. To unselect means that no decision has been made: the feature
is neither selected nor deselected. Each of these configuration manipulation operations
returns a boolean value, i.e., true if the feature selected/deselected/unselected does exist.

An example usage of these operations is given below:

1 conf1 = configuration mi1 // create a configuration of mi1
2 b1 = select Anonymized in conf1 // feature Anonymized is selected
3 b2 = deselect Anonymized in conf1 // override the previous selection
4 b3 = unselect Anonymized in conf1 // neither selected nor deselected

In line 1, the operator configuration creates and initializes a configuration of the feature
model mi1. Lines 2-4 provide examples of the configuration manipulations. In addition,
the accessors selectedF, deselectedF, unselectedF return respectively the set of selected,
deselected and unselected features of a configuration.

Reasoning about feature models and configurations. FAMILIAR provides several operators
to support reasoning about feature models and configurations. The script below provides
examples of the feature model manipulation and reasoning operators:

1 conf2 = copy conf1
2 nb = counting mi1 // number of valid configurations: 8
3 b1 = isValid conf1
4 b2 = (selectedF conf1) eq (selectedF conf2) // true
5 select Anonymized in conf1
6 confFM = asFM conf1 // convert a configuration into a feature model
7 cmp = compare m1 mi2 // refactoring

Line 2 computes the number of valid configurations of mi1. The isValid operator checks
whether a configuration is not inconsistent (see line 3) according to its feature model. In-
deed, a selection or deselection of feature may lead to an unvalid configuration (e.g., when
two mutually exclusive features are selected).

The isValid operator can also perform on an feature model and determines its satisfiabil-
ity (see Definition 7, page 26). FAMILIAR also provides an operator, called isComplete, that
checks whether a configuration is complete, i.e., whether all features have been selected or
deselected. The Configuration type provides three accessors that return the set of selected,
deselected and unselected features: selectedF, deselectedF and unselectedF. Line 4 checks
that the set of selected features in both conf1 and conf2 are equal (which is true simply
because conf2 is a copy of conf1).
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Moreover, the operator asFM can convert a configuration, say c, into a feature model:
for each selected feature of c, say f , we add a propositional constraint (i.e., a literal f ) to
the feature model of c and for each deselected feature of c, say g, we add a propositional
constraint (i.e., a negative literal ḡ) to the feature model of c. For example, in line 5-6,
confFM is the feature model mi1 plus the literal Anonymized. asFM is typically used when
a configuration is not complete. The operator asFM guarantees that the resulting feature
model does not contain anomalies (see Section 3.1.2).

The compare operation is used to determine whether an feature model is a refactor-
ing, a generalization, a specialization or an arbitrary edit of another feature model. This
operation is based on the algorithm and terminology used in [Thüm et al. 2009] (see also
Definition 10, page 53). Line 7 illustrates comparison capabilities based on sets of configu-
rations of feature models. cmp is an Enum type whose possible values can be REFACTOR-
ING, SPECIALIZATION, GENERALIZATION and ARBITRARY. In the example above, cmp
has the value REFACTORING since mi1 and mi2 represent the same set of configurations.

Conditional and iterator constructs. The conditional construct is a classical if then else
(see Section 8.3 for an illustration). FAMILIAR has also conditional and loop control struc-
tures. foreach loop (see lines 2 to 5 in the example script below) can be used to iterate
over a set of variables (e.g., representing feature models, features, and configurations) and
over a sequence of operations. FAMILIAR also allows a script writer to use a wildcard "*” to
define a set of elements (e.g., feature models, features). It may be placed just after “.” or
anywhere within a variable or feature name. The following illustrates the use of the loop
control structure and the wildcard:

1 varset = mi1.* // it can be written: varset = features mi1
2 foreach (f in varset) do
3 newName = strConcat "new_" f
4 renameFeature f as newName
5 end

Line 1 gathers in varset all the features of mi1. We then iterator over varset (which represents
a set of features) so that each feature name becomes prefixed with “new_”.

8.2.4 Decomposition

In Figure 8.1, we show three uses of the slice operator, which syntax is as follows:

fmS = slice anFM including | excluding setOfFeatures

anFM is the feature model that is sliced and fmS is the resulting one (anFM remains
unchanged). including, resp. excluding, keeps only, resp. rejects, the setOfFeatures in pa-
rameter. This parameter may be obtained using set operations or FAMILIAR accessors – an
XPath-like syntax is provided to address features within a feature model.

For example in Figure 8.1(b), fm1.A*, corresponds to all features included in the sub-
hierarchy A of fm1 (including A itself). In Figure 8.1(d) {E, D, F} is a set of three features
E, D, F of fm1. In the following example below, we use the operator setUnion to build a set
which corresponds to all features included in the sub-hierarchies A and P of fm1 (but not
including A nor P).

fm5 = slice fm1 including setUnion fm1.A.* fm1.P.*
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(d) [[[fm4]]={{F}, {D, E}}

Figure 8.1: Example of slice operations applied on the feature model of Figure. 8.1(a).

8.2.5 Composition

Inserting feature model. The insert operator produces an feature model by inserting a
feature model into another base feature model. In line with Section 5.2, the operator takes
three arguments: i) the aspect feature model to be inserted, ii) the feature in the base feature
model where the insertion is to take place, and iii) the operator (e.g., Xor) that determines
the form of the insertion. The insertion returns false if the two sets of features in the base
and aspect feature model are not disjoint (we recall that each feature name must be unique
in a feature model, see Section 3.1.2), if the feature in the base feature model does not exist
or if the aspect feature model is inserted into the root feature of the base feature model
with a Xor or Or-group. The base feature model is modified if the insertion succeeds. An
example of a FAMILIAR script describing an insertion is given below:

1 base = FM (Format: [OpenSource] Header Name
2 [Anonymization] ; Name: (DICOM|Analyze); )
3 aspect1 = FM ( MetaData : [Secured] Patient [Provenance]; )
4 insert aspect1 into Anonymization with mand // ’base’ is modified
5 removeVariable aspect1 // no longer need ’aspect1’ variable
6 fInt = parent MetaData // feature Anonymization is now in ’base’ FM
7 assert ((name fInt) eq "Anonymization") // check it
8 // check feature MetaData in ’base’ FM has still three child features
9 assert ((size (children MetaData)) eq 3)

In the example, the feature MetaData is inserted below the feature Anonymization (line
4): MetaData is a child feature of Anonymization with the mandatory status, i.e., the se-
lection of Anonymization implies the selection of MetaData. The assert operations are
performed to check that the insertion produced an feature model with correct properties.
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Mode Semantic properties Mathematical notation FAMILIAR notation
Intersection JFM1K ∩ JFM2K = JFMrK FM1 ⊕∩ FM2 = FMr merge intersection { fm1 fm2 }
Union JFM1K ∪ JFM2K ⊆ JFMrK FM1 ⊕∪ FM2 = FMr merge union { fm1 fm2 }
Strict Union JFM1K ∪ JFM2K = JFMrK FM1 ⊕∪s FM2 = FMr merge sunion { fm1 fm2 }
Diff {x ∈ JFM1K | x /∈ JFM2K} = JFMrK FM1 \ FM2 = FMr merge diff { fm1 fm2 }

Table 8.1: Merge: semantic properties and notation

In line 5, the role of removeVariable is twofold. First, the variable identifier aspect1 is no
longer "active" in the rest of the script so that when the identifier MetaData is used in line
6, it is not ambiguous: it corresponds to the feature MetaData of base. Second, it releases
the memory used by aspect1.

Merging feature models. The syntax of the merge operator is closed to the notation defined
in Chapter 5 (see Table 8.1). The first parameter is the mode of the operator and the second
parameter is a Set of feature models In Table 8.1, the properties of the merged feature model
are summarized with respect to the sets of configurations of two input feature models and
the mode.

In FAMILIAR, the merge operators act on (a set of) feature models2 and produce fea-
ture models with semantic properties according to the mode specified by the programmer.
Below is part of a script that uses a merge operator:

1 mi4 = FM ( MedicalImage: Modality Format Anatomy [Anonymized];
2 Modality: (v10.1|v10) ; Format: (NiftiII|Analyze) ; Anatomy: Brain;)
3 mi5 = FM ( MedicalImage: Modality Format Anatomy [Header];
4 Modality: (v10.1|v10|v9) ; Format: NiftiII ; Anatomy: (Kidney|Brain);)
5 mi_inter = merge intersection { mi4 mi5 }
6 mi_inter_expected = FM ( MedicalImage: Modality Format Anatomy ;
7 Modality: (v10.1|v10) ; Format: NiftiII ; Anatomy: Brain ;)
8 assert (mi_inter eq mi_inter_expected)

In line 5, the merge operator in intersection mode is applied on mi4 and mi5 and pro-
duces a new feature model that can be manipulated through the variable mi−inter. In line
8, we check thatmi−inter is equal tomi−inter−expected. The binary operator eq is specific
to variable complex types. In particular, two variables of feature model type are equal if i)
they represent the same set of configurations, i.e., the compare operator applied to the two
variables returns REFACTORING and ii) they have the same hierarchy.

9 mi_sunion = merge sunion { mi4 mi5 }
10 n_sunion = counting mi_sunion // number of valid configurations
11 n_expected = counting mi4 + counting mi5 - counting mi_inter
12 assert (n_sunion eq n_expected)

In line 9, the merge operator in strict union mode is applied on mi4 and mi5 and pro-
duces a new feature model that can be manipulated through the variable mi−sunion. In

2Configurations can be merged using asFM.
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Figure 8.2: Aggregated feature model

lines 10-12, we check the following property:

Jmi4K ∪ Jmi5K| = |Jmi4K|+ |Jmi5K| − |Jmi4 ∩mi5K| = |Jmi−sunionK|

using counting operations, i.e., the value of n is equal to Jmi−sunionK.

Aggregating feature models. Another form of composition can be applied using cross-
tree constraints between features so that separated feature models are inter-related. The
operator aggregate is used for producing a new feature model in which a synthetic root
relates a set of feature models and integrates a set of propositional constraints.

1 fm1 = FM (A : B [C] [D] ; D : (E|F) ; C -> !E; ) // E and F are mutually exclusive
2 fm2 = FM (I : J [K] L ; ) //
3 fm3 = FM (M : (N|O|P)+ ; ) // M, N, O, P form an Or-group
4 cst = constraints (J implies C ; )
5 fm4 = aggregate fm* withMapping cst // equivalent to aggregate { fm1 fm2 fm3 }
6

7 // simplify fm4 (e.g., by removing dead features)
8 fm5 = slice fm4 including fm4.*
9

10 op = operator fm5.F
11 assert (op eq mand) // mandatory status since E is no longer in the Xor-group
12

13 // renaming of the root feature
14 rfm5 = root fm5
15 renameFeature rfm5 as "MySPL"

All reasoning operations (e.g., counting, isValid) can be similarly performed on the
new feature model resulting from the aggregation.

In particular, as we have seen in Section 5.3, when feature models are related through
constraints, some features may be dead or core features. We use the corrective capabilities
of the slice operator i) to remove dead features (here: E is removed due to the constraint
C ⇒ ¬E) ii) to set the variability information (here: the feature C becomes mandatory due
to the constraints). Figure 8.2 recaps the situation at the end of the script execution.
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8.2.6 Modularization mechanisms

Statements are organized in scripts. FAMILIAR provides modularization mechanisms that
allow for the creation and use of multiple scripts in a single SPL project, and that support
the definition of reusable scripts.

Namespace and Script Calling. Variable name conflicts may occur, for example, when it
is necessary to run the same script several times (see discussion on parameterized scripts
below) or when features having the same name are used by feature models referred to by
different variables. FAMILIAR relies on namespaces to allow disambiguation of variables
having the same name. By default, a namespace is attached to each variable of type feature
model so that it is possible to identify a feature by specifying the name of the variable of
type feature model followed by "."

1 children mi1.Modality // explicit notation needed
2 mi2.MedicalImage // MedicalImage exists also in mi1 and mi3
3 parent MRI // non ambiguous: equivalent to mi3.MRI

Lines 1-3 illustrate the use of namespace: features Modality and MedicalImage are present
in two feature models, mi1 and mi2, and are identified thanks to the namespace. Note that
MRI appears only in mi3 and is non-ambiguous so that there is no need to explicitly use
the namespace.

Namespaces are also used to logically group related variables of a script, making the
development more modular. The example below is used to illustrate how FAMILIAR sup-
ports the reuse of existing scripts:

1 run "fooScript1" into script_declaration
2 varset = script_declaration.*
3 export varset
4 hide script_declaration.mi*

Line 1 shows how to run a script contained in the file fooScript1 from the current script.
The namespace script−declaration is an abstract container providing context for all the
variables of the script fooScript1. In addition, FAMILIAR allows a script programmer to use
a wildcard "*" to access a set of elements (e.g., feature models, features). It may be placed
just after "." or anywhere within a variable or feature name. For example, line 2 (resp. 4)
accesses the set of all variables of script−declaration (resp. all variables starting by mi
in script−declaration). By default, a script makes visible to other scripts all its variables.
Using export with several variable names means that only those variables remain visible.
Using hide instead means that all variables mentioned are not visible.

Parameterized Script. A script can be parameterized using an ordered list of parameters
(see lines 2-3 below). A parameter records a variable and, optionally, the type expected.

1 // fooParameterizedScript.fml : a parametrized script
2 parameter fm1 : FeatureModel
3 parameter fm2 : FeatureModel // type specification is optional
4

5 d1 = deads fm1
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6 d2 = deads fm2
7 //... comparison of dead features
8 c1 = cores fm1
9 c2 = cores fm2

10 //... comparison of core features

The example below illustrates how the parameterized script can be called:

1 newMI = FM (MedicalImage: Anatomy [Header]; Anatomy: (Brain|n256);)
2 newMI2 = copy newMI
3 setMandatory newMI2.Header // editing facilities: Header is now a mandatory
4 // feature in newMI2
5 run "fooParameterizedScript" { newMI newMI2 }

8.3 AN APPLICATION TO THE MANAGEMENT OF MULTIPLE SPLS

In this section we illustrate how FAMILIAR can be used to support the management of mul-
tiple SPLs3 and in particular provide a practical solution to the approach developed in
Chapter 6.

8.3.1 First Management of the Multiple SPL

We recall that in a competing multiple SPL, each constituent SPL describes a different fam-
ily of products (e.g., services) in the same market segment (e.g., medical imaging domain)
produced by competing suppliers (e.g., research teams). The example scenario that will
be used to illustrate how FAMILIAR can be used to manage multiple SPLs is presented in
Figure 8.3. The scenario involves three steps. In the first step the medical imaging ex-
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// newworkflow.fml: a new workflow family 

workflow = FM ( Workflow: IntensityCorrection Segmentation [Registration] ;
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export workflow

Figure 8.3: Managing Multiple SPLs

pert produces a feature model with no assumptions about the parts provided by external
suppliers – see À. In the next step, this family of workflow is viewed as an aggregation of

3In [Acher et al. 2011b], we have also shown how FAMILIAR can be applied using a "laptop" example.
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several competing multiple SPLs for different parts of the workflow: for example, Intensity
Correction, Segmentation, Registration. In the scenario, the need for an external supplier for
a registration medical imaging service is identified. This requirement results in the gen-
eration of competing multiple SPLs that represents the offerings of the three suppliers for
the Registration (see Á). The SPL of each supplier’s service family is built from its services.
After the requirements of the medical imaging expert is mapped with the one of suppliers
(see Â), application-specific processing should be performed. The medical imaging expert
can use competing multiple SPLs to i) determine whether the set of suppliers is able to
provide the entire set of services and to cover all combinations of features or to ii) iden-
tify missing services, and to iii) eliminate the suppliers that do not provide the required
services.

Building SPLs’ Repositories. In the script below, Supplier1 proposes eight registration
services, each one being distinguished from the others by features. (Note that we can use
the same name convention for all suppliers since namespaces are used to disambiguate
names.) The set of registration services can then be organized (e.g., grouped together) by
the medical imaging expert within an SPL.

We consider that services exhibit no variability: Each registration service description is
represented as a feature model in which all features are mandatory.

1 // RegSupplier_1.fml: registration services’ specification of Supplier_1
2 Regservice1 = FM ( Reg: Modality Format Anatomy ; Modality: MRI ; ...)
3 Regservice2 = FM ( Reg: Modality Format Anatomy ; Modality: CT ; ...)
4 ...
5 Regservice8 = FM ( Reg: Modality Format Anatomy Anonymized ; Modality: CT ; ..)

Building an SPL from the set of existing services can be done by applying the merge
operator in strict union mode on the set of corresponding feature models (line 3 in the
script below). A feature model is then produced for each supplier (e.g., Regspl−1 feature
model for Supplier1).

1 // repositoryReg.fml: repository of registration services
2 run "RegSupplier_1" into Regsupp1
3 Regspl_1 = merge sunion Regsupp1.*
4 run "RegSupplier_2" into Regsupp2
5 Regspl_2 = merge sunion Regsupp2.*
6 run "RegSupplier_3" into Regsupp3
7 Regspl_3 = merge sunion Regsupp3.*
8 renameFeature Regspl_3.MIFormat as "Format" // aligning terms
9 export Regspl_* // export the three suppliers’ FMs/SPLs

A repository of registration services is now represented by a set of different feature
models (one per supplier). Similarly, other repositories can be built for other kinds of
services (intensity correction, segmentation, etc.) and imported in a script (see lines 3-5

below).

1 // workflowScenario.fml: implementation of suppliers’ scenario
2 run "newworkflow" // new family of workflow firstly designed
3 // load repositories
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4 run "repositoryReg" into Reg
5 run "repositorySegm" into Segm
6 run "repositoryIntensity" into intensity

Mapping Repositories to the SPL. The script below describes mappings from SPLs in
repositories to the medical imaging expert’s SPL. For each part of the family of work-
flow (handled by the script newworkflow.fml – see run command line 1 and Figure 8.3),
it is necessary to determine which SPLs and suppliers are suitable to provide the given
service. Indeed, the family of workflow specifies different alternatives for the choice of
a registration service. In order to reason about the registration service of feature model
workflow, the variability information of the registration service (sub-tree rooted at feature
Registration) is first extracted. originalReg, resulting from the slice (line 10), is a copy of the
sub-tree and can be manipulated as a feature model. In particular, each valid configura-
tion of originalReg should correspond to at least one service provided by a supplier and
present in the registration service repository, i.e., the following relation (C1) should hold:

JoriginalRegK ∩ (JRegspl−1K ∪ JRegspl−2K ∪ JRegspl−3K) = JoriginalRegK

It may happen that such a property is not respected and two cases have to be considered.
First, the intersection between the set of services of originalReg and the set of suppliers’
service may be empty (lines 9-16). Verifying this property can be done by first performing
the merge operations on originalReg, Regspl−1, Regspl−2 and Regspl−3 (line 16). This
gives a new feature model mi−merged and its satisfiability can then be controlled, i.e.,
checking whether or not there is at least one valid configuration (lines 17-20).

Another possibility is that the family of workflow offers to medical imaging experts
some services that cannot be entirely provided by suppliers (lines 22-27). In this case,
originalReg is a generalization or an an arbitrary edit of the union of set of suppliers’ services
(line 22). Performing a merge diff operation (see Table 8.1) assists users in understanding
which set of services is missing (line 23-26).

7 // we map the service Reg description with the service registration repository
8 allServicesReg = merge sunion Reg.* // Regspl_1, Regspl_2, Regspl_3
9 originalReg = slice workflow.Registration* // extraction of the subtree

10

11 // alignment: renaming terms to be coherent with the repository
12 renameFeature originalReg.MIFormat as "Format"
13 renameFeature originalReg.Registration as "Reg" //...
14

15 /***** checking the availability of services *****/
16 mi_merged = merge intersection { originalReg allServicesReg }
17 if (not (isValid mi_merged)) then
18 print "No service can be provided"
19 exit // stop the program
20 end
21 cmp_mi = (compare originalReg allServicesReg)
22 if (cmp_mi eq GENERALIZATION || cmp_mi eq ARBITRARY) then
23 mi_losed = merge diff { originalReg allServicesReg } // missing services
24 s_losed = configs mi_losed // set of configurations of mi_losed
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25 n_losed = counting mi_losed // number of configurations
26 println n_losed " service(s) cannot be provided: " s_losed
27 end
28 assert (cmp_mi eq REFACTORING || cmp_mi eq SPECIALIZATION)

At this step, all services of originalReg can be provided by suppliers. For example, the
relation holds considering the feature models depicted in Figure 8.4. Indeed, the set of
configurations of originalReg is included or equal to the union of set of suppliers’ ser-
vices since, according to set theory, the relation (C1) is equivalent to JoriginalRegK ⊆
(JRegspl−1K ∪ JRegspl−2K ∪ JRegspl−3K). We check this property in line 27.

Format Anatomy

Reg

Modality Vertex

CTPET Brain KidneyDICOM

Regspl_3

Format Anatomy

Reg

Modality Multi

PETMRI DICOM Analyze Brain

Regspl_2

Format Anatomy

Reg

Modality

MRI DICOM Brain

Regspl’_2

Format Anatomy

Reg

Modality

MRI DICOM Nifti Kidney

Regspl’_1

Reg

Modality

MRI

Format

DICOM Nifti Brain Kidney

Anatomy

Nifti excludes Brain

originalReg

Format Anatomy

Reg

Modality Multi

PETMRI DICOM Nifti Kidney

Regspl_1

Figure 8.4: Available suppliers and services.

Selecting Suppliers. At this point, the medical imaging expert needs to determine which
suppliers can provide a subset of the services of originalReg (lines 28-40). Some suppli-
ers cannot provide at least one service corresponding to any configuration of originalReg
(lines 31-33) and so should not be considered. Figure 8.4 illustrates the situation: Supplier3
is no longer available since the intersection between JoriginalRegK and JRegspl−3K is
the empty set. Some suppliers offer services that correspond to a valid configuration of
originalReg but also offer out-of scope services. To remove these services, a merge in
intersection mode is systematically performed to restrict attention to the set of relevant
supplier services (line 31). For example, the feature Multi is no longer included in the set
of services of Supplier1 and Supplier2 (see Regspl′−1 and Regspl′−2 in Figure 8.4) while
Supplier2 is now able to deliver only one service.

28 Reg_suppliers_in = setEmpty // create an empty set
29 foreach (supplReg in Reg.*) do
30 // checking each supplier providing Regs
31 fmReg_inter = merge intersection { originalReg supplReg }
32 bReginter = isValid fmReg_inter
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33 if (not bReginter) then
34 println "The supplier is unable ...:\t" supplReg
35 else
36 setAdd Reg_suppliers_in fmReg_inter // add relevant FM
37 end
38 end
39 assert ((size Reg_suppliers_in) >= 1) // available supplier >= 1

At the end of the loop,Reg−suppliers−in corresponds to a set of feature models, where
each feature model represents a valuable service line of a supplier. Then, originalReg can
be configured: a similar sequence of merge operations on configurations can be executed
until an unique service of a supplier is chosen.

41 miService = configuration originalReg // configuration process
42 select Brain in miService // ...

8.3.2 Towards Reusable Scripts

The FAMILIAR script workflowScenario.fml can fully realize the scenario of Figure 8.3. Never-
theless, this script has some limitations. First, when users select or deselect features, some
suppliers may become unable to provide services corresponding to the new requirements.
We want to perform validity checks at each step of the configuration process. An approach
where sequences of code are copied from above and pasted in again is not desirable. Sec-
ond, reasoning operations are planned to be performed on each part of the workflow (as
done with the registration service). The current script does not allow a programmer to
reuse the repetitive tasks performed on feature models, leading again to duplicate codes.
We thus propose to apply modularization mechanisms provided by FAMILIAR to raise the
limitations mentioned above.

Modularizing the code. The script workflowScenario2.fml (see below) is a refactoring of
the code workflowScenario.fml. The code used in line 1-13 remains the same: repositories
of services are built; the workflow feature model describing the valid combinations of
features is specified; some alignment operations are performed so that one can reason
about the workflow feature model and the feature models of the repositories. This time,
the checking operations are performed in two parameterized scripts: checkAvailability.fml
and availableSuppliers.fml (see below).

14 // workflowScenario2.fml: lines 1-13 remain the same
15 /***** checking and inform which available suppliers are *****/
16 run "checkAvailability" { originalReg allServicesReg } into
17 mi_availability
18 if (mi_availability.available) then
19 run "availableSuppliers" { Reg.* originalReg } into
20 mi_suppliers
21 end

The script checkAvailability.fml compares the set of configurations of two feature models,
originalFM and allServices, which are two parameters of the script. It controls whether
or not each valid configuration of originalFM is also valid in allServices. It also provides
some feedback to users, for example, the number of configurations valid in originalFM
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but invalid in allServices. When the set of configurations of originalFM is fully covered
by allServices, the boolean variable available is set to true and exported. Then, this vari-
able is accessible from the calling script, i.e., workflowScenario2.fml (see line 18).

1 // checkAvailability.fml : is the set of services fully covered
2 parameter originalFM : FeatureModel
3 parameter allServices : FeatureModel
4

5 fm_merged = merge intersection { originalFM allServices }
6 available = true
7 if (not (isValid fm_merged)) then
8 available = false
9 println "No service can be provided: "

10 exit // stop the script execution
11 end
12 cmp = compare originalFM allServices
13 if (cmp eq GENERALIZATION || cmp eq ARBITRARY) then
14 available = false
15 fm_losed = merge diff { originalFM allServices } // missing services
16 println (counting fm_losed) " service(s) cannot be provided: " ...
17 end
18 export available

In line 17 of workflowScenario2.fml, each combination of features of a service (e.g., reg-
istration service) corresponds to at least one service from the repository. We want to de-
termine which specific suppliers are able to offer such services. A parameterized script
availableSuppliers.fml is used to perform the needed operations. The first parameter, named
suppliers, is a set of feature models and represents the suppliers’ offer: a feature model of
the set corresponds to the offer of one supplier. The second parameter, named services, is
a feature model representing the service specification. For each feature model suppl that
belongs to the set suppliers, we determine whether or not some valid configurations of
services are valid in suppl. If this is not the case, this means the supplier is unable to pro-
vide any service and feedback is given to users. At the end, the script displays the available
suppliers and the corresponding feature models are updated.

1 // availableSuppliers.fml: suppliers able to provide services
2 parameter suppliers : Set // set of feature models
3 parameter services : FeatureModel
4

5 suppliers_in = setEmpty
6 foreach (suppl in suppliers) do
7 // checking suppliers’ offer
8 fminter = merge intersection { services suppl }
9 if (not (isValid fminter)) then

10 println "The supplier is unable to provide ...:\t" suppl
11 else
12 setAdd suppliers_in fminter // add relevant FM
13 end
14 end
15 nsuppliers = size suppliers_in
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16 println nsuppliers " suppliers are available:"
17 foreach (supp in suppliers_in) do
18 println supp
19 end

Resulting benefits. The FAMILIAR script code has been modularized. We can raise the lim-
itations described above. At each step of the configuration process, users can have feed-
back from available suppliers (even if the set of features is not fully selected or deselected).
In addition, for each service of the workflow (segmentation services, intensity correction
services, etc.), similar checking operations can be performed by reusing parameterized
scripts.

22 /**** workflowScenario2.fml: multi-step configuration ****/
23 miRegService = configuration originalReg
24 select DICOM in miRegService
25 miRegFM = asFM miRegService // convert a configuration to a FM
26 run "availableSuppliers" Reg.* miRegFM
27 // configuration continues until a supplier’s service is chose

8.4 SUMMARY

In this chapter, we have discussed why a textual domain-specific language (DSL) seems
particularly adequate to the domain of propositional feature models. The main features
of FAMILIAR, a DSL to manage feature models, have been introduced. FAMILIAR provides
support for our composition and decomposition operators, but not only: A set of comple-
mentary operators for editing and reasoning about feature models has also been presented.
We have described how language constructs allow a feature model user i) to control when
and how (de-)composition and analysis mechanisms are applied, ii) to replay and reuse
(de-)composition and analysis procedures. We have illustrated the capabilities of FAMIL-
IAR with a non trivial scenario in the medical imaging domain.





Nine

Implementation Details and Performance
Evaluation

In this chapter, we briefly described the implementation of FAMILIAR (parsing process, ar-
chitecture, connection with other APIs, environment) and we evaluate the performance of
two important operators, merge and slice.

9.1 IMPLEMENTATION DETAILS

9.1.1 Architecture Overview

FAMILIAR is developed in Java language using Xtext [Xtext 2011], a framework for the de-
velopment of external DSLs. The term language workbench is sometimes used since Xtext
supports DSL creation not just in terms of parsing and code generation but also in provid-
ing a better editing experience for DSL users (syntax highlighting, cross-reference resolv-
ing, validation, formatting, outline-view, code-completion, rename refactoring, etc.). Xtext
is fully integrated to the Eclipse platform and builds on Eclipse Modeling Framework 1

(EMF). We use Xtext to parse FAMILIAR scripts, obtain a representation of an DSL script
that we can analyze and interpret using the framework facilities of Xtext (see Figure 9.1).
In Xtext, the representation of an DSL script is an EMF-based model (also called semantic
model in [Fowler 2009; 2010]), that captures all the important semantic behavior.

A semantic model is usually distinguished from an abstract syntax tree (AST) because
they serve separate purposes. A syntax tree corresponds to the structure of the DSL scripts.
Although an AST may simplify and somewhat reorganize the input data, it still takes fun-
damentally the same form. The semantic model, however, is based on what will be done
with the information from a DSL script. It often will be a substantially different struc-
ture, and usually not a tree structure. In Xtext, the semantic model and the AST are rather
equivalent. The minor difference is that the semantic model is actually a graph rather than
a tree, since it also contains crosslinks.

Xtext derives a EMF-based meta-model from the grammar definition (see Figure 9.1).
As a result, each semantic model is an instance of EMF-based meta-model. Furthermore,
Xtext generates an Antlr-Parser from the grammar definition and automatically converts
the AST into the semantic model. In Xtext, the parser creates the EMF-based semantic
model or the abstract syntax tree from the textual representation of the model. Many com-
ponents, including our interpreter, work on this semantic model rather than directly on
the textual representation.

1http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/emf/
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Figure 9.1: Architecture of DSL processing

9.1.2 Environment and Ecosystem

We provide an Eclipse text editor (including syntax highlighting, formatting, code-
completion, etc.) and an interpreter that executes the various FAMILIAR scripts. An in-
teractive toplevel is also available, connected with graphical editors.

Moreover several "bridges" have been developed to import and serialize feature models
(see Figure 9.2). The connection with other tools and languages has several benefits.

From interoperability to Reuse. First, several notations can be used for specifying feature
models (SPLOT [Mendonca et al. 2009a], GUIDSL/FeatureIDE [Batory 2005, Kästner et al.
2009a], a subset of TVL [Boucher et al. 2010], etc.). The proposed bridges allow users
to import feature models or configurations from their own environments and encourage
interoperability between feature modeling tools.

Second, as a feature model or a configuration can be exported (using the save opera-
tion), outputs generated by FAMILIAR can be processed by other third party tools, for ex-
ample, modeling tools when we need to relate feature models to other models [Czarnecki
and Antkiewicz 2005, Heidenreich et al. 2010].

Third, and perhaps more importantly, the support of different formats allows one to
easily reuse state-of-the-art operations already implemented in existing tools. We reuse
the technique to reason about edits described in [Thüm et al. 2009] and implemented in
FeatureIDE [Kästner et al. 2009a] to implement the compare operator. Feature-model-
synthesis 2 implements an algorithm to synthesize a feature model from a propositional
formula (as described in [Czarnecki and Wąsowski 2007]). We reuse and adapt some tech-
niques of the algorithm to implement the merge and the slice operators (see Chapter 5 and
Chapter 7). Moreover, we reuse some heuristics developed in SPLOT [Mendonca et al.
2009a] to compile large feature models into BDDs.

2Feature-model-synthesis is developed by Steven She (University of Waterloo, Canada) and Andrzej
Wąsowski (IT University of Copenhagen) and is available at https://bitbucket.org/mintcoffee/
feature-model-synthesis. We take this opportunity to thank Steven She and Andrzej Wasowski for early
sharing with us their implementation.

https://bitbucket.org/mintcoffee/feature-model-synthesis
https://bitbucket.org/mintcoffee/feature-model-synthesis
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Figure 9.2: FAMILIAR Infrastructure and Ecosystem

Fourth, we reuse graphical facilities. The connection with the FeatureIDE framework
allows us to reuse the graphical editors (for editing and configuring feature models). All
graphical edits are synchronized with variables environment and all interactive commands
are synchronized with the graphical editors. Similarly, we reuse SPLOT facilities to initiate
the development of a web-based FAMILIAR environment. We also developed a bridge with
S2T23, a configurator developed at Lero.

Cross-checking of operations. In order to test the correctness of the operator implemen-
tations, we develop a comprehensive set of unit tests, complemented by cross-checked
testing with other operations provided by FAMILIAR. For example, many APIs, including
ours, propose the counting operation (the APIs of TVL [Boucher et al. 2010], FeatureIDE
and SPLOT). We verify that all implementations of the operator compute the same result.

9.1.3 Reasoning Backend

The set of configurations represented by a feature model can be described by a proposi-
tional formula defined over a set of Boolean variables, where each variable corresponds to
a feature. From the propositional formula, various reasoning operations can be automated
and performed. Two reasoning backends are internally used in FAMILIAR: SAT solvers and
Binary Decision Diagrams.

SAT solvers. The satisfiability problem (SAT) is the problem of determining for a given for-

3http://download.lero.ie/spl/s2t2/

http://download.lero.ie/spl/s2t2/
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mula whether there is an assignment such that the formula evaluates to true or not. A SAT
solver is a tool that decides the satisfiability problem. Most SAT solvers require the input
formulas to be in Conjunctive Normal Form (CNF). If a SAT solver is given a satisfiable
formula, the solver returns a satisfying assignment (a model) of the formula. If the given
formula is unsatisfiable, the solver returns a proof for the unsatisfiability. Despite the NP-
completeness of the satisfiability problem, nowadays SAT solvers are extremely efficient
and are able to deal with formulas with thousands of variables and are still improving as
illustrated by the yearly SAT Competition [http://www.satcompetition.org/ 2011].

Definition 18 (Formula, literal, clause, CNF). A propositional formula is called a literal iff it is
a variable or a negated variable. A formula is called a clause iff it is a disjunction of zero of more
literals. Each variable must appear at most once in a clause. A formula is in the conjunctive normal
form (CNF) iff it is a conjunction of clauses.

Binary Decision Diagrams (BDDs). BDDs are widely used in digital system design [Mi-
nato 1996], model checking and also in the feature modeling community (e.g., [Czarnecki
and Wąsowski 2007, Mendonca et al. 2008, Benavides et al. 2010, Classen et al. 2011]). Ef-
ficient optimized implementations of these operations are provided by off-the-shelf BDD
libraries (e.g., we use the open source JavaBDD library [JavaBDD 2007]).

A BDD is a rooted directed acyclic graph with nodes labeled by names of input vari-
ables, except for two special leaf nodes labeled 1 and 0, corresponding to True and False.
A BDD is a compact representation of a Boolean function on a particular ordering of in-
put variables. To obtain the value of the formula under a certain assignment, one follows
the appropriate edges until reaching one of the leaves. In the rest of the thesis and in
conformance with the literature, the term BDD always refers to Reduced Ordered Binary
Decision Diagram (ROBDDs). ROBDDs are canonical: that is, for every Boolean function
and fixed variable ordering, there is a unique logically equivalent ROBDD.

Polynomial time algorithms are available for computing the negation, conjunction, dis-
junction or existential quantification of BDDs [Brace et al. 1990], for computing valid do-
mains during the configuration process or for checking equivalence between two BDDs.
The response time of most of standard algorithms on BDDs requires time proportional to
the size of the BDD. The size of a BDD is the number of nodes manipulated in the graph
structure and depends on the binary function being represented as well as the chosen vari-
able ordering.

A major drawback of BDDs is their high sensitivity to variable ordering, i.e., finding
an optimal variable ordering during BDD construction is NP-hard [Brace et al. 1990, Bollig
and Wegener 1996, Minato 1996]. This ordering has a dominant influence on the size of
BDDs: A bad order can lead to excessive memory use, often beyond capabilities of typical
technologies. Some heuristics have been developed and outperformed naive encoding of
feature models into BDDs. It has been reported that these techniques successfully compile
feature models to BDDs for a number of features up to 2000 [Mendonca et al. 2008]. We
thus reuse the heuristics (i.e., Pre-CL-MinSpan) developed in [Mendonca et al. 2008] to
reduce the size of BDDs.

BDD and/or SAT. Even though there has been an enormous increase in computing power
in the last decade, the problems of feature combinatorics remain NP-hard and can take
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a long time to solve. Not all representations will perform equally well [Darwiche and
Marquis 2002]. Both BDDs or SAT solvers have been used to perform various reasoning
operations on feature models, for example, to determine if a feature model contains at least
one product or how many valid configurations it describes (see Chapter 3).

FAMILIAR provides, for most of the reasoning operations (counting, isValid, etc.), two
implementations that rely either on BDDs or SAT solvers. For the implementation of the
merge and the slice operators, our current effort is limited to an implementation based
on BDDs. Challenges of an implementation based on SAT solvers of these operators are
discussed at the end of the chapter.

9.2 EVALUATING THE PERFORMANCE OF OPERATORS

The investigation of practical performance of operators should allow for answering the
following questions:

• which tools should be used and when?
• can the choice of which tools to use be automatically made to minimize the time to

analyze feature models?
• is it necessary to integrate different solvers?
Benavides et al. analyzed the performance of Constraint Satisfaction Problem (CSP),

SAT and BDD solvers in finding valid configuration given a feature model [Benavides et al.
2006]. For example, they show that BDDs are faster than CSP or SAT solvers, but with a ten
times higher memory usage. We have retrieved the initial observations of Benavides et al.
For example, we have experimented the counting operation of FAMILIAR using either SAT
or BDD: SAT solver does not scale for counting all solutions of feature models (difficulties
arise even for feature models with more than 200 features) whereas BDDs are much faster
in counting all solutions and scale better.

9.2.1 Merge Operators

Implementation Details. We implemented the merging operators presented in Sec-
tion 5.4.2 using BDDs. As mentioned above, computing the negation, conjunction or dis-
junction of BDDs can be performed in at most polynomial time with respect to the sizes of
the BDDs involved. These logical operations are used extensively during the merging of
several feature models.

Experimental Setup. We evaluate how the size of the models affects performance of merge
operators that are implemented using BDDs. We use randomly generated feature mod-
els to produce inputs with variations on i) the number of constituent SPLs (noted nFM )
in the multiple SPL, ii) the number of features commonly shared by SPLs (noted nComm),
and iii) the percentage of features commonly shared by SPLs (noted per). The variation of
nComm has an impact on the total number of features within each feature model whereas
per allows us to vary the features commonly shared between feature models. We make
per vary between 100% (which corresponds to the case where all features are commonly
shared) and 50%, so that we can analyze the merge behavior when all features are not
necessarily shared by feature models. As we are dealing with competing SPLs, the per-
centage of shared features is intended to be rather high. For our setup, we consider 50% is
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Figure 9.3: Calculation time and space complexity (strict union merge)

a reasonable4 value under which a set of SPLs are not likely to be grouped together, espe-
cially for the case of competing multiple SPL described in Chapter 6. For each value of per,
we experimented with different values of nFM , to determine how many feature models
can be handled by the merge, and of nComm, to determine the manageable size of input
feature models. We chose to focus on the common features of each feature model since
the goal of the merge operators is to group two or nComm features with the same name
into one feature. We measured the calculation time needed to perform logical operations
on BDDs. For input feature models, we randomly created an initial feature model and
performed random edits (similarly as in [Thüm et al. 2009]) to obtain new input feature
models. Then, features are randomly added to these feature models. This way, we can
parametrically control nFM , nComm and per.

Results. In Figure 9.3, we report our results when nFM = 20 and nFM = 40, with
merging operations performed in strict union mode. We also performed experiments on

4It must be noted that this value is not backed by any empirical study. We only use it to restrict our experi-
mentations to parts that look the more relevant to us.
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the merge operator in intersection mode and we observed similar results as with the strict
union mode. Only an excerpt of figures is given. All experimental results for 10 ≤ nF M ≤

200, 50 ≤ per ≤ 100 and 10 ≤ nComm ≤ 200 are available at https://nyx.unice.fr/projects/
familiar/wiki/mofm.

Experiments show that when all features are commonly shared by SPLs (per = 100%),
the calculation time is almost linear to the number of features and the implementation
scales even for nFM greater than 200 and for nComm greater than 200. With per ≤ 60%
scalability issues occur when nFM = 40 and for nComm ≥ 45 (see Figure 9.3). For these
values, the logical operations fail since data overflows the main memory.

In addition to the calculation time, we measured the memory space, i.e., the size of
the resulting BDD. As features with the same name are encoded into the same Boolean
variable, the total number of Boolean variables, noted nBooleanV ariables, can be deduced
from nComm, nFM and per using the following relation: nBooleanV ariables = nComm+
(nFM ∗ nComm( 1−per

per
)).

The experimental results show that i) the increase of the number of nodes is propor-
tional to nBooleanV ariables, and ii) the computation time is almost linear to the size of
the BDD. As a result, the merge operations can efficiently manage a large number of SPLs
even with a lot of features, especially when the SPLs share a large amount of common fea-
tures (between 80% and 100%). In this case, the number of Boolean variables encoded in
the resulting BDD appears to be tractable.

Bottleneck. In the presented experimental results, we only consider the use of logical op-
erations on BDD, as it is a compact representation of the configuration set of the expected
feature model. For a majority of operations on feature model (e.g., consistency checking),
reasoning about the configuration set is sufficient, whereas the hierarchy is only needed
from a user perspective (e.g., visualization or selection of features). We therefore do not
take into consideration the time needed to reconstruct the hierarchy and the structuring
information of the feature model. Experiments indicate that on typical Boolean formu-
las, the reconstruction algorithm presented in [Czarnecki and Wąsowski 2007] scales up to
800 variables5, for example, the number of common features should not exceed 300 when
per = 100%.

9.2.2 Slice Operator

Complexity and Performance. The proposed slice algorithm relies on propositional for-
mula and feature model hierarchy computations. Hierarchy computations use standard
graph techniques and are not an issue, even for very large feature models. The handling of
logical operations relies on Binary Decision Diagrams (BDDs) [Brace et al. 1990]. As men-
tioned above, an important property of BDDs is that computing their existential quantifi-
cation (e.g., computing φslice) can be performed in at most polynomial time with respect
to the sizes of the BDDs involved [Brace et al. 1990].

Genuine feature models. For a first evaluation, we used several small and medium-sized

5Janota et al. reported that the BDD-based algorithm proposed in [Czarnecki and Wąsowski 2007] scales
up only for feature models with 300/400 features [Janota et al. 2008], but did not use the heuristics proposed
in [Mendonca et al. 2008].

https://nyx.unice.fr/projects/familiar/wiki/mofm
https://nyx.unice.fr/projects/familiar/wiki/mofm
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#features / CTCR 10 20 30 40 50 60 70 80 90 100
100 100 100 100 100 100 100 100 100 100 100
300 100 100 100 100 100 100 100 100 100 100
400 100 100 100 100 100 100 100 100 90 ×B

500 100 100 100 100 100 100 90 80 70 ×B

800 100 90 80 80 70 70 60 60 50 ×B

1000 100 80 80 70 60 50 50 ×B ×B ×B

2000 35 ×B ×B ×B ×B ×B ×B ×B ×B ×B

> 2000 ×B ×B ×B ×B ×B ×B ×B ×B ×B ×B

Figure 9.4: Scalability of the algorithm wrt. the number of features in a feature model and
CTCR

feature models that were publicly available from SPLOT [Marcilio Mendonca 2009] repos-
itory as well as feature models from our case studies (see Part IV). We performed our
experiments on more than 100 feature models, the bigger one having 290 features. An
important parameter of the slicing operator is the number of features within the slicing
criterion, noted nslice. It varies from 1 to n (n is the number of features in the feature
model). We note perslice the ratio nslice / n expressed as a percentage (e.g., 100% when the
slicing criterion contains all features of the feature model). We found that computing the
slice (including the feature diagram synthesis) is almost instantaneous in all cases (i.e., for
1 ≤ perslice ≤ 100).

Generated feature models. Even though industry reports feature models with several hun-
dreds of features, we did not have access to such feature models. Therefore, we randomly
generated them. We varied i) the number of features, noted #features, from 100 to 2000
features (the practical limits of BDD) ; ii) the ratio of the number of features in the con-
straints to the number of features in the feature hierarchy expressed as percentage, noted
CTCR, varies from 10% to 100%. We used the procedure described in [Marcilio Mendonca
2009] and publicly available to randomly generate the feature models. In each generated
model, each type of mandatory, optional, Xor and Or-groups was added with equal prob-
ability. The cross-tree constraints were generated as a single Random 3-CNF formula. Re-
sults are shown in Figure 9.4. For each pair of value (#features, CTCR) the maximum
value of perslice for which the algorithm scales up is reported while ×B means that the
BDD cannot be compiled. The results show that:

• whenever a feature model can be represented as a BDD, and for all values of perslice,
φslice can be computed. Hence the encoding of φslice can scale up to 2000 features
with a CTCR of 10 ;

• the synthesis of the feature diagram has practical limits (up to 800 features in the
slicing criterion). However it can scale even for a feature model with 2000 features if
the percentage of features to slice is ≤ 35%. The reason is that the size of a BDD will
always be smaller or at least unchanged after existential quantification ;

• the algorithm scales for a large CTCR and large number of features, which is impor-
tant as we want to handle complex cross-tree constraints ;

• the primary limit of the BDD-based implementation lies in the difficulties to compile
BDD from the original feature model.
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9.2.3 Threats to Validity.

External threats. Threats to external validity are conditions that limit our ability to general-
ize the results of our experiments to industrial practice. Our primary concern is whether
generated feature models and other variables of the experiments (i.e., slicing criteria, edits
of feature models) are representative of industrial usage. Our case studies show that fea-
ture models with CTRC > 50 exist but currently we have not observed publicly available
feature models with more than 300 features.

Internal threats. A first threat concerns the correctness of the slicing and merge opera-
tor implementation. In particular, the slicing operator is supposed to guarantee that some
semantic properties are preserved. We develop a comprehensive set of unit tests, com-
plemented by cross-checked testing with other operations provided by FAMILIAR. Among
others, we control that:

• the merge diff operator is in line with the compare or the isValid operator ;
• the configs operator is in line with the counting operator ;
• the merge (union or intersection) of a feature model fm1 with itself gives a feature

model logically equivalent to fm1 and having the same hierarchy of fm1 ;
We also manually verify a large number of slice and merge examples. Besides we ob-

served that randomly generated feature models may contain a lot of anomalies (e.g., dead
features). We used this opportunity to gain further confidence in our implementation. We
thus applied our slicing technique to automatically correct anomalies in generated feature
models. The implementation was in line with the properties presented in Section 7.2. For
all cases, we checked that the original feature model and the slice (i.e., corrected) feature
model were equivalent in terms of sets of configurations, that the slice feature model did
not contain any error, and that the hierarchy was conform to the original feature model.
Another threat is that we cannot guarantee that the slicing or merge operators do not de-
pend on certain shapes of a feature model, or certain kinds of constraints. We reused an
established technique from the state-of-the-art [Marcilio Mendonca 2009] that guarantees
a random generation.

9.2.4 Summary

Limits. The main results show that:
• the synthesis of the feature diagram has practical limits (up to 800 features). This

limit applies to the merge and slice operators. We observed that the slicing technique
can scale even for a feature model with 2000 features if the percentage of features to
slice is ≤ 35%. The reason is that the size of a BDD will always be smaller or at least
unchanged after existential quantification.

• the primary limit of the BDD-based implementation lies in the difficulties to compile
BDD from the original feature model. In particular, the total number of features in
the resulting merged feature model should not be greater than 2000 features, other-
wise it is impossible to having a BDD-representation of the merged formula. For the
slice operator, whenever a feature model can be represented as a BDD, φslice can be
computed. For example, the encoding of φslice can scale up to 2000 features with a
CTCR of 10 ;

• the order of complexity of publicly available feature models can be handled.
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Impact on FAMILIAR. SAT or BDD. For most of FAMILIAR operators, a SAT and/or BDD-
based implementation is provided. Both have strengths and limits. The FAMILIAR frame-
work on top of which the language is built allows one to choose an implementation for a
given operation. We may provide to the FAMILIAR user a concrete syntactical mechanism
(e.g., annotation in a script) to make his/her choice for each operator. Otherwise a default
choice (e.g., the choice of BDD for counting) is applied. Lazy Strategy. For most of the op-
erations, logic encoding prevails over diagrammatical representation. The propositional
formula by itself is sufficient to perform reasoning operations (such as satisfiability check-
ing, dead feature detection, etc.). Based on this observation, FAMILIAR implements a lazy
strategy: for all merge, aggregate and slice operations, we only compute the propositional
formula of the resulting feature model. The hierarchy of the feature model is constructed
only when needs be, e.g., for the purpose of visualization or serialization. The lazy strategy
is useful since reconstructing the hierarchy is costly.

SAT-based implementation. Recently, She et al. proposed techniques to reverse engineer-
ing very large feature models (i.e., with more than 5000 features). For this order of com-
plexity, BDDs do not scale. The authors adapted their previous techniques and now rely
on SAT solvers (rather than BDDs as in [Czarnecki and Wąsowski 2007]). They reported
that the use of SAT solvers is significantly more scalable. In a way this is similar to what
has been observed in [Marcilio Mendonca 2009, Janota 2010] for SAT-based analyses of fea-
ture models. Hence a SAT-based implementation of slicing and merging is an interesting
perspective for future work.

We identify three challenges for a SAT-based implementation:
• the development of efficient techniques to existentially quantify variables from

propositional formula for the slice operator ;
• the encoding of the merged formula in CNF so that the size of the formula remains

tractable for the merge operator ;
• the support of Or-groups (the most expensive step in the BDD-based algorithm, and

not taken into account in [She et al. 2011]) for slice and merge operators.
This would allow a systematic comparison of BDD and SAT-based implementations as

well as an optimal support into FAMILIAR based on the study.



Part IV

Applications
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In this part, we show how the proposed operators and FAMILIAR have been applied
in different application domains (medical imaging, video surveillance) and for different
purposes (scientific workflow design, variability modeling from requirements to runtime,
reverse engineering feature models). Chapter 10 describes how we can combine multi-
ple variability artifacts to assemble coherent workflows in the medical imaging domain.
Chapter 11 reports how in dynamic adaptive systems, such as video surveillance systems,
the variability requirements can be refined at design time so that the set of valid software
configurations to be considered at runtime may be highly reduced. Chapter 12 illustrates
the joint used of a set of operators to reverse engineer the feature model of FraSCAti, a
large and highly configurable component and plugin based system.





Ten

Composing Multiple Variability Artifacts to
Assemble Coherent Workflows

This chapter shares material with the SC’10 paper "Managing Variability in Workflow with
Feature Model Composition Operators” [Acher et al. 2010c] and the SQJ’11 paper "Com-
posing Multiple Variability Artifacts to Assemble Coherent Workflows" [Acher et al. 2011f].

Traditionally, variability management assumed that all artifact variants of a software
system were provided by a single source. But now, in many SPL environments, includ-
ing software systems, the amount of functionality that needs to be developed to satisfy
customer needs is far larger than what can be built from scratch in a reasonable amount
of time. To solve this problem and facilitate mass customization, it is necessary to take
into account externally developed components or applications, themselves being highly
variable.

Similar requirements occur during the building of workflow. In our experience, this is
particularly the case during the construction of medical imaging workflows (see Chapter 4)
where many different kinds of highly parameterized software services exist, provided by
different suppliers. The tasks of identifying, tailoring and composing those services with
their variability become tedious and error-prone. There is thus a strong need to manage
the variability so that developers can more easily choose, configure and compose those
services with automated consistency guarantees. To tackle this problem, our approach
is to consider services as SPLs, as they are provided by different researchers or scientific
teams, while the entire workflow is then seen as a multiple SPL in which the different
service SPLs are composed.

We have shown in Chapter 5 and Chapter 6 how composition operators can be used to
fulfill part of the requirements, but independently of the workflow. A comprehensive pro-
cess – from design to configuration of a workflow – that allows a workflow designer to assemble
the different variability sources (services, concerns, suppliers) is still to be proposed.

In this chapter, we show how to specify variability requirements over the workflow and
how consistency is checked when available services in the catalog are composed, including
constraints within or across services. We also describe how this part of the process can be
automated in order to incrementally assist the user until deriving a consistent workflow
product.

In Section 10.1, a typical usage scenario is unfolded from design to configuration of a
workflow. In Section 10.2 we briefly describe the realization, how workflows are analyzed
and how variability is described and reasoning made possible by generating appropriate
code in FAMILIAR. In Section 10.3 we analyze our approach in terms of user assistance and
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degree of automation. We also report a first user experiment on workflow building. In
Section 10.4, we summarize our contribution.

10.1 FROM DESIGN TO CONFIGURATION OF WORKFLOW

The goal of our approach is to derive, from an high-level description augmented with
variability requirements, a consistent workflow product composed of services offered by
the catalog described in Chapter 6

10.1.1 Overview of the Process

Figure 10.1 gives an overview of the proposed multi-step process described in this chapter.
In step À of the process, the workflow designer first develops a high-level description

of the workflow that defines the computational steps (e.g., data analyses) that should take
place as well as the dependencies between them. In Section 10.1.2, we will introduce the
workflow description language (GWENDIA) we used in this study.

The workflow description is then augmented with rich representation of requirements
in order to support discovery, creation and execution of services used to realize the com-
putational steps. In step Á, the workflow designer identifies the variable concerns (e.g.,
medical image format, algorithm method) for each process of the scientific workflow. A
feature model can be associated to a concern of a process, so that the variability of this
concern is represented by it (Section 10.2 will discuss how this is implemented). Hence
several feature models are woven at different, well-located places in each process (e.g.,
dataport, interface) for specifying the variability of application-specific requirements. We
will present in Section 10.1.3 mechanisms to achieve separation of concerns and to reuse
sub-parts of the catalog of feature models rather than developing from scratch feature
models.

In the general case, some features of a concern may interact with one or more features
of other concern(s). In step Â, some application-specific constraints within or across ser-
vices are typically specified by the workflow designer to not permit some combinations
of features. Similarly, some compatibility constraints (e.g., between dataports) can be de-
duced from the workflow structure and be activated or not by the workflow designer. We
will describe in Section 10.1.4 the kinds of constraints that can be specified or deduced
from the workflow structure.

In order to ensure that the variability requirements do match the combination of fea-
tures offered by the catalog, the workflow designer compares, in step Ã, the feature models
woven in the workflow with the feature models in the catalog of legacy services. In Section
10.1.5, we will explain how the matching verification is performed for all services of the
workflow and reduces the set of features to consider.

In step Ä, we automatically reason about feature models and constraints specified by
the workflow designer in step À and Á. Constraints propagation and merging techniques
are combined to reason about feature models and their compositions (see Section 10.1.6).
This provides assistance to the workflow designer (detection of errors, automatic selection
of features, etc.)

To complete the workflow configuration (step Å), the workflow designer has to re-
solve concern feature models where some variability still remains, and to perform se-
lect/deselect operations. The step Å may be repeated as much as needed in order to allow
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Figure 10.2: Excerpt of workflow and service metamodel.

the workflow designer to proceed incrementally. Ä should also be repeated in order to en-
sure workflow consistency is maintained. In step Æ, the workflow designer uses the final
workflow configuration to identify the services in the catalog that support the combination
of features. If more than one service is identified, the workflow designer examines them
to choose a best fit or an arbitrary configuration of legacy services. Then services are then
combined to form the final workflow product. This step is out the scope of this chapter.

10.1.2 Workflow Design

To support the workflow modeling activity, we use the GWENDIA language [Montagnat
et al. 2009]. GWENDIA specifically focuses on coarse grain data-intensive scientific appli-
cations and enables the description of massively data-parallel applications. Some work-
flow engines (e.g., MOTEUR [Glatard et al. 2008]) use the GWENDIA language to describe
and deploy applications on grid1 infrastructures. A GWENDIA workflow is notably com-
posed of a series of processors connected to each other through their input and output
ports. For the purpose of the paper, we consider that GWENDIA workflows can be repre-
sented using the metamodel described in Figure 10.2, referred hereafter as the GWENDIA
metamodel. There are two main parts: the general description of a workflow (elements in
blue color on the right) and the specification of a service (elements in yellow color on the
left).

A workflow is a set of process which are connected by directed links relation through
input and or output dataports. These links may correspond to operators for i) executing
services in sequence, ii) parallel computations and iii) branching through if-then-else con-
structs. Some processes do not have inputs (source) while others do not have outputs (sink).

1The grid can be thought of as a large-scale distributed infrastructure that provides access to a coordinated
set of resources (computing power, storage, data, etc.) [CoreGRID 2011, Foster et al. 2002].
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The expected characteristics of the workflow services can be specified from different per-
spectives. This information can then be exploited in the workflow. For example, with
descriptions of the data format, automatic reasoning techniques could check data inter-
operability between services connected in the workflow. In the GWENDIA metamodel of
Figure 10.2, we have identified some abstraction capabilities that can be used to augment
services’ description. This includes the functional part of the service, in particular its in-
put and output parameters, as well as extra-functional information that can be related to
the grid platform in which the service is deployed. In our context, some variability in-
formation can be attached to services’ elements, for example, to describe the variety of
medical image formats supported as an input parameter. With regard to the metamodel,
an instance of a service element is a joinpoint in which a feature model can be woven.

10.1.3 Separation of Concerns while Specifying Variability

There are at least two approaches that a workflow designer can use to define workflow
service variabilities. One approach is to create from scratch feature models for each service
with variable concerns (as in [Acher et al. 2010c]). This solution has two major drawbacks.
First, the modeling effort tends to be important and time-consuming. Second, when the
workflow designer wants to determine whether the specified combination of features is
realized in the catalog, the feature models developed have to be compared with catalog
feature models. There is a risk that vocabulary terms used for features’ names, hierarchies
to structure features as well as granularity detail largely differ, thus requiring an important
alignment effort.

Another approach is to build feature models that are modified versions of catalog fea-
ture models, that is, closely matched catalog feature models are modified so that they
include only the features that are needed in the workflow. Hence the modeling effort as
well as the alignment effort are reduced through reuse.

Unfortunately, a feature model may represent the variability of all concerns within a
service, including the features’ constraints between concerns, whereas the workflow de-
signer wants to focus on some specific views of the catalog of feature models. For example,
in Figure 10.3, FMCatalogAffineRegistration describes four concerns: the two input medical
images, the output medical image and the algorithm method, while there are some con-
straints between the feature Mono and the features Analyze2. The workflow designer may
want to only consider the part of FMCatalogAffineRegistration corresponding to the algo-
rithm method.

To resolve this issue, extractions, based on the slicing mechanism described in Chap-
ter 7, can be performed and the original feature model can be split into smaller feature
models, also called variability concerns in the remainder of the chapter. Once extracted, the
workflow designer can weave the smaller feature models into specific places of a service
to document its variability requirements.

For example, in Figure 10.3, two feature models FMaffmoving and FMaffop are ex-
tracted from the feature model FMCatalogAffineRegistration. These two feature models are
then specialized (feature Rigid becomes mandatory in FMaffop and feature Nifti is no

2The two features Analyze have the same name but are different entities. To avoid ambiguity, we use a
qualified feature name including the root feature when needs be (e.g., to distinguish the Analyze feature of
MIMoving from the Analyze feature of MIFixed. In this specific case, the merge operator makes internally
the distinction such that MIMoving.Analyze does not match with MIMoving.Analyze.
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Figure 10.3: Extracting variability concerns from FMCatalogAffineRegistration
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Figure 10.4: Weaving variability concerns into services
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longer present in FMaffmoving) and finally woven into two joinpoints of an Affine regis-
tration service (see Figure 10.4). Four joinpoints are defined in Affine registration: :moving
and :fixed are instances of type InputArgument, :out is an instance of type OutputArgument
and :op is an instance of type FunctionalInterface. Four feature models, including the two
feature models FMaffmoving and FMaffop, are woven into the four joinpoints: three of
them deal with medical image formats whereas the fourth feature model deals with the
kind of algorithm used for processing the images (see Figure 10.4).

10.1.4 Variability Consistency Rules

The variability information attached to services authorizes numerous combinations of fea-
tures (configurations) so that a final workflow product can be derived. Nevertheless, not
all configurations are valid since variability concerns, documented as separated feature
models, can be dependent on other variability concerns within services and across services.
Furthermore some specific constraints may be specified by the workflow designer to re-
strict the set of valid configurations.

We define a classification of the various types of constraints and then we present how
the specification and the verification of these constraints are integrated within the process
shown in Figure 10.1.

Constraint Classification We identify four kinds of constraints:

Intra-services constraints. Variability concerns within a service may interact in two ways:
Catalog constraints. The specification of a workflow service should correspond to

at least one service in the catalog. Therefore, variability concerns that describe
a workflow service should match the constraints imposed by the catalog.

Application specific constraints. Intra-constraints may be specific to an application,
for example, a user can require that the imaging formats supported as inputs
must be the same for each input data port of the service. As a result, the fea-
ture models representing the different input images supported by a service are
related to each other through constraints between features. For example, a user
specifies in Figure 10.4 that the feature DICOM (resp. Analyze) of FMaffixed

implies the feature DICOM (resp. Analyze) of FMmoving .
Inter-services constraints. Variability concerns are likely to interact also across services.

We identify two kinds of situations where the sets of valid combination of services’
features may be further constrained:
Workflow Compatibility constraints. Due to the interconnection of services in the

workflow, elements of services may be dependent. As a result, concerns at-
tached to these elements may, in turn, be dependent on each other. This typ-
ically occurs when concerns are attached to input/output data port. For in-
stance, the medical image output format of the service Bias correction is consid-
ered to be compatible with the medical image input format of the other connected
services, i.e., Affine registration, Longitudinal intensity correction, Brain extraction
and Non-linear registration in the workflow of Figure 10.5. The compatibility re-
lation restricts the set of valid combination of features in each of those services
(see next Section).

Application specific constraints. Two (resp. more than two) feature models at-
tached to two (resp. more than two) different services may be related to each
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explicitely by the workflow 

designer

Possible 

deactivation is 

performed at step 

3 of the process

Intra-Service 

Constraints

Inter-Service 

Constraints

At step 3 of the 

process

The workflow designer 

specifies it explicitely It is performed at the step 5 

of the process i.e.  when the 

consistency checking and 

variability propagation is 

done (See Section 4.4.3 )

Constraint 

Classification
Contraint Checking

Constraint Specification

Table 10.1: Specification and checking of constraints within the process.

other in some workflow applications. The user should have the ability to specify
some specific constraints when he/she considers that services are tightly cou-
pled. For example, it is required in the medical image domain that registration
and unbias services, that are directly connected in the workflow, are using the
same algorithm.

Integration of Constraints within the Process. Some constraints are manually specified
by the user (e.g., inter-feature model constraints specific to an application) whereas some
others can be detected from the workflow analysis (see Table 10.1). In particular, compat-
ibility constraints between data ports can be deduced and then constraints are applied on
feature models attached to data ports. Nevertheless, if the workflow designer is develop-
ing the workflow in an incremental manner, he/she may want to deactivate part of the
compatibility checks according to the service and/or the concerns he/she focused on.

Dataport compatibility. The compatibility relation can be defined, at the feature model
level, as follows: For at least one valid configuration of the feature model associated to
the medical image output there is an equal configuration valid in the feature model(s)
associated to the medical image input(s) (and vice-versa).

As shown in [Acher et al. 2010c], when n services are concurrently executed3, it is not
sufficient to reason about pairs of services independently when checking dataport compat-
ibility:

3For other workflow constructs (e.g., if-then-else), properties in terms of sets of configuration have also been
defined (see [Acher et al. 2010c] for more details).
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Figure 10.5: Data compatibility between services.

(FMout ⊕∩ FMafffixe 6= nil) ∧ (FMout ⊕∩ FMreference 6= nil) ∧
(FMout ⊕∩ FMin 6= nil) ∧ (FMout ⊕∩ FMnlinfixed 6= nil)

since the merging (e.g., (FMout⊕∩FMafffixe)) has side effects on input feature models
(e.g., FMout and FMafffixe).

We thus need to reason about all services at the same time:

(FMout ⊕∩ FMafffixe ⊕∩ FMreference ⊕∩ FMin ⊕∩ FMnlinfixed) 6= nil (Cmp1)

It can be generalized as follows: When the output dataport of a service FService1 is
connected to input data ports of a set of services FService2, . . . , FServicen, services are
consistent according to feature models attached to dataports if the following relation holds:

FMo1 ⊕∩ FMi2 ⊕∩ FMi3 . . .⊕∩ FMin 6= nil
when FMo1 is the feature model attached to the output dataport of FService1 and

FMi2 . . .FMin are feature models attached to the input dataports of resp. FService2, . . . ,
FServicen.
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10.1.5 Reasoning about Catalog and Requirements Variability

We have described and illustrated how a user can specify variability at different places as
well as the kinds of constraints that may occur in a scientific workflow. We now show how
to perform automated reasoning about the feature models and constraints.

Formalization. We first formalize the relationship between feature models, services and
workflows as well as the notion of validity at the service and workflow levels. The formal-
ization is used afterwards to describe the algorithms that realize reasoning operations.

Definition 19 (Service and Feature Models). A service FServicei is described as
• a set of feature models, V Ci = {FMi,0, FMi,1, . . . , FMi,n}.
• a set of intra-constraints, Φi where each γ ∈ Φi is an arbitrary propositional constraint over

the set of features of any feature model belonging to V Ci.

Definition 20 (Service and Validity). Let Γaggi be the aggregated feature model of FServicei

obtained by placing the feature models of V Ci under an And-decomposed synthetic root r and
adding the conjunction of each constraint that belongs to Φi.

A configuration c of a service FServicei is a set of features selected where each feature of c is
either a feature of FMi,0, FMi,1, . . . , or FMi,n. The configuration c is valid iff c ∈ (JΓaggi

K \ r)

For example, the service Affine Registration of Figure 10.4 is composed of four feature
models, FMafffixed, FMaffmoving , FMaffout and FMaffop, and two intra-constraints. An
example of a valid configuration of this service is given below:

{ MIFixed, MIFixed.Modality Acquisition, MIFixed.MRI, MIFixed.T1, MIFixed.Format, MI-
Fixed.Analyze MIMoving, MIMoving.Modality Acquisition, MIMoving.MRI, MIMoving.T1, MI-
Moving.Format, MIMoving.Analyze MIOutput, MIOutput.Modality Acquisition, MIOutput.MRI,
MIOutput.T1, MIOutput.Format, MIOutput.DICOM, MIOutput.Anonymized Method, Affine,
Rigid, Modality, Mono }

Definition 21 (Workflow and Feature Models). A workflow is described as
• a set of services, εservices = {FService0, FService1, . . . , FServicen} ;
• a set of connections between those services, C ⊆ εservices × εservices ;
• a set of inter-constraints, ζ where each η ∈ ζ is an arbitrary propositional constraint over

the set of features of any feature model of εservices, i.e., FM0,0, FM0,1, . . . , FM0,m0 , . . . ,
FMi,0, FMi,1,. . . , or FMi,mi , . . . , FMn,mn ;

• a set of compatibility constraints µ over the set of feature model configurations of the work-
flow. The set can be deduced from the connections between workflow services or be deacti-
vated/specified by a workflow designer.

Definition 22 (Workflow and Validity). A configuration cw of a workflow is a set of features
selected where each feature of cw is either a feature of FM0,0, FM0,1, . . . , or FMn,mn

.
Let ∆agg be the aggregated feature model of a workflow obtained by placing the aggregated

feature models of each service under an And-decomposed synthetic root r and adding the set of
constraints ζ and µ.

The configuration c is valid iff c ∈ (J∆aggK \ r)
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The approach we propose provides automated support for i) ensuring for each fea-
ture models associated with a service of the workflow, that only valid and consistent se-
lect/deselect decisions are made, ii) propagating the decisions so that the workflow de-
signer is only required to answer questions needing human intervention (the answers to
the other questions are inferred automatically).

We illustrate how we can automate consistency checking and reduction of variability
using the Affine registration service as an example. According to the semantics defined
above, the following three conditions should not be violated in the Affine registration ser-
vice:

• (a) at least one configuration of the workflow service should correspond to another
configuration of an existing service in the catalog. Formally:
Let Γaggaff

be the aggregated feature model of service Affine registration and
Γcatalogaff

be the feature model of the corresponding family of service in the cata-
log. Then, the following relation holds: JΓaggaff

K ∩ JΓcatalogaff
K 6= ∅ ;

• (b) the compatibility constraints between Affine registration and other connected ser-
vices are enforced. Formally: the relation (Cmp1) holds (see page 149);

• (c) FMaffout, FMop, FMafffixed and FMaffmoving are to be consistent. Formally:
Let Γaggaff

be the aggregated feature model of service Affine registration.
∃cout ∈ JFMaffoutK, cop ∈ JFMopK, cfixed ∈ JFMafffixedK,
cmoving ∈ JFMaffmovingK s.t. (cout ∪ cop ∪ cfixed ∪ cmoving) ∈ JΓaggaff

K ;

Catalog Mapping. The reasoning process starts by ensuring that the catalog can provide,
for all services in the workflow, at least one corresponding feature model that matches its
variability requirements. We consider that each workflow service may be mapped to a
catalog of feature models4. The availability is checked for all services that are mapped to
a catalog. The reasoning process has also the capability to identify variability choices that
are no longer available in the catalog of feature models. In Figure. 10.6, we illustrate how
the mapping between Affine registration and the catalog of Figure 10.3 is realized. Some
variability choices have been inferred, for example, feature Multi is no longer present and
thus the feature Mono is now a core feature. The intra-constraints have been reinforced.
For example, configurations of the catalog that include the feature Nifti are not considered
because the variability requirements of the service Affine registration do not include the
feature Nifti. Such reasoning can be automated using the merging techniques described in
Chapter 6.

The key idea is to assemble all feature models of the service into an aggregated feature
model and then query the catalog of feature model. We use the Algorithm 3 (see Ap-
pendix .3) that describes how the catalog is queried. First, the feature models of each ser-
vice are aggregated together with their intra-constraints. The merge in intersection mode
is then performed5 and finally the feature models of the workflow service, as well as the
intra-constraints, are updated after slicing the merged feature model.

4The mapping between a service of the workflow and the catalog is specified by the user using a domain-
specific language, see Section 10.2

5Some alignment issues may occur when merging two feature models. For example, a naive aggregation
of feature models can lead to an aggregated feature model without the structuring feature MIInput, and thus
disturbs the merging process. We provide to the user the ability to specify some pre-directives before merging
feature models. The feature model alignment problem is more general and further discussed in Chapter 14.
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For instance, FMaffixed at the bottom of Figure 10.6 is sliced from the aggregated fea-
ture model and includes the constraints that involve its features Anonymized and Analyze.

In this step, every workflow service is consistently mapped to a catalog of feature mod-
els. There is no longer need to query again the catalog. The restrictions on the sets of con-
figurations, compactly represented by the merged feature model, guarantee the existence
of at least one corresponding service in the catalog.

10.1.6 Consistency Checking and Variability Propagation

Dataport compatibility. The reasoning process continues by ensuring that the compatibil-
ity constraints between dataports are enforced (see À of Figure 10.7). At the feature model
level, the merge intersection is performed between FMout, FMafffixed, FMreference,
FMlinfixed and FMin. The root features of the different input feature models fed to the
merge operator may have different names6. Such features disturb the merging process so
that, theoretically, JFMmergedK is empty. For practical reasons, we automatically rename
each root feature of the feature models involved in the merging with the same temporary
name (e.g., Medical Image), if needs be. When the relation (Cmp1) defined page 149 does
not hold, the sources of the error (i.e., the identification of the services that are not compat-
ible to each other) are reported to the user. Otherwise, a valid feature model is computed:
FMmerged.

The resulting feature model produced by the merge operator, FMmerged, is then used
to update (i.e., replace) all the feature models involved in the compatibility relation. For
example, a new feature model, called FMafffixed′ , is now associated to the pointcut :fixed
of Affine registration (see Á of Figure 10.7) and is equal to FMmerged. Hence the features DI-
COM and Anonymized of FMafffixed are no longer present. Algorithm 4 (see Appendix .3)
recaps the situation.

Propagating constraints within a service. The intra-constraints of the service Affine regis-
tration may further reduce the set of valid combinations of features in other feature mod-
els of the service. When the feature model involved in the dataport compatibility has
been modified, as it is the case for FMafffixed, intra-constraints have to be considered for
checking validity or propagating choices within a service7. For example, the feature An-
alyze of FMafffixed′ implies the feature Analyze of FMaffmoving (see Â of Figure 10.7).
A reasoning backend can then infer that the feature DICOM is no longer included in any
configuration of FMaffmoving .

Furthermore, it may happen that the compatibility relation involving FMafffixed truly
holds but that the service is not valid due to intra-constraints.

The approach consists in aggregating the four feature models FMafffixed′ ,
FMaffmoving , FMaffout, FMop, FMaff together with the constraints Φaff of the ser-
vice Affine registration. The resulting feature model is denoted FMall. FMall is then being
analyzed for various purposes:

6It may be for practical reasons (e.g., convention) or for better characterizing the high-level concept for which
the feature model applies. In the example, rather than always using Medical Image, users prefer to be more
precise for describing the kind of medical image associated to a feature model. This issue is an instance of the
feature model alignment problem.

7Note that Algorithm 4 (see Appendix .3) does propagate constraints only for services whose feature models
have been modified during the compatibility checking.
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updated.



154 CHAPTER 10. COMPOSING MULTIPLE VARIABILITY ARTIFACTS

FMmerged

updating FMs
2

FMreference

FMout

Bias 

correction

Affine 

registration

Non-linear 

Registration

Brain 

extraction

Longitudinal 

intensity 

correction

FMafffixed

:in

:fixed

:fixed

:reference

:out

∩
compatibility checking

1

Affine 

registration

:fixed:moving

:op

:out

FMaffout

Method

Affine

Mono Multi

Modality

Rigid

FMaffop

FMafffixed'

FMaffmoving'

AnonymizedFormat

DICOM Analyze

Modality 

Acquisition

MRI

T1 T2

MIMoving

Analyze excludes Anonymized

propagating 

intra-constraints

3

FMnlinfixed FMin

Φaff = {Mono ó (MIFixed.Analyze and 

MIMoving.Analyze),

MIMoving.DICOM ó  MIFixed.DICOM, 

MIMoving.Analyze ó MIFixed.Analyze, ...}

AnonymizedFormat

DICOM Analyze

Modality 

Acquisition

MRI

T1 T2

MIFixed

Analyze excludes Anonymized

AnonymizedFormat

DICOM Analyze

Modality Acquisition

MRI

T1 T2

MIFixed

Analyze excludes Anonymized

AnonymizedFormat

DICOM Analyze

Modality Acquisition

MRI CT

T1 T2

MIOut

SPECT

MRI excludes Nifti

Nifti

AnonymizedFormat

DICOM Analyze

Modality Acquisition

MRI CT

T1 T2

MIReference

AnonymizedFormat

Nifti Analyze

Modality Acquisition

MRI CT

T1 T2

MIFixed

SPECT

MRI implies Analyze

Format

DICOM Analyze

Modality Acquisition

MRI

T1 T2

Medical Image

SPECT

Format

Analyze

Modality 

Acquisition

MRI

T1 T2

Medical Image

AnonymizedFormat

DICOM Analyze

Modality 

Acquisition

MRI

T1 T2

MIOutput

Analyze excludes Anonymized

Figure 10.7: Reasoning process: for each connected dataports in the workflow, we propa-
gate variability choices within each service involved in the compatibility checking.
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• consistency of the service Affine registration can be decided by checking the satisfia-
bility of FMall ;

• we can detect dead and core features and report back to the workflow designer ;
• the corrective capabilities of the slicing technique can be applied to simplify and up-

date the different feature models of the service Affine registration (removal of features
when features are known to be dead, setting the mandatory status to some core fea-
tures, etc.) ;

Reiterating the reasoning process. It may happen that the inference of variability choices
through intra-constraints propagation leads to the modification of a feature model in-
volved in a dataport compatibility. (It is not the case for Affine registration.)

Let us consider the example given in Figure 10.8 where services FService1 and FService2
are sequentially connected. Compatibility checking between their dataports :out and :in
is first performed (see À) such that features E, D are no longer present in FMoutput of
FService1 while feature F is no longer present in FMinput of FService2. Then, constraint
propagation is performed in FService1 and FService2 (see Á). No variability choices can be
inferred in FService2. In FService1, feature Z2 has been removed due to the intra-constraint
B∨C ⇒ ¬Z2. In turn, feature C has been removed due to the intra-constraint Z2 ⇐⇒ C.
Hence, the feature model FMoutput involved in a compatibility relation between dataports
has been modified and compatibility checking should be reiterated (see Â). It modifies
FMinput and, after constraint propagation, FMY in FService2 (see Ã). The reasoning pro-
cess stops since no variability choices can be inferred in FService1 and FService2 and the
compatibility checking between FMoutput and FMinput has no effect.

Algorithm 6 of Appendix .3 describes the reasoning process. Compatibility checking is
performed if and only if a feature model attached to a dataport connected to other data-
ports has been modified during constraint propagation (and thus marked during the exe-
cution of the Algorithm 5 of Appendix .3) . If the set of configuration of a feature model
remains the same, the algorithm terminates. An important property of the merging oper-
ator in intersection mode is that each input feature model is either a refactoring or a gen-
eralization of the merged feature model. As a result, each time the compatibility checking
is performed, feature models involved are either specialized or not impacted. Hence, the
set of configurations is either the same or is decreased until being a singleton. This prop-
erty guarantees that the algorithm necessary terminates when no variability choices can be
deduced.

Multi-step Configuration of the Workflow. All feature models of the workflow can be par-
tially configured or specialized [Czarnecki et al. 2005b, Thüm et al. 2009]. The specialization
activity includes the selection/removal of some features, the adding of some constraints
within a feature model, etc. Reasoning operations, as described above, can be similarly
performed at each step to ensure consistency of the whole workflow and propagate vari-
ability choices (see Å of Figure 10.1).

Once the specializations of all feature models are complete, we know by construction
that it corresponds to services in the catalog. It may happen that given a configuration
of a service, there is more than one service that corresponds in the catalog (since there
exists services that support the same combinations of features). In this case, the user has
to arbitrary choose which services he/she wants to include in the final workflow product.



156 CHAPTER 10. COMPOSING MULTIPLE VARIABILITY ARTIFACTS

FService1
:out

:interface

FService2:in

:interface

A

C BE D

A

C BF

Z1

Z2Z4 Z3
Y1

Y2 Y3

FMoutput

FMz

FMy

FMinput

ΦFService1 = {Z2 ó C, 

(B or C) implies not Z2} 

ΦFService2 = 

{Y2 ó B} 

FService1
:out

:interface

A

C B

Z1

Z2Z4 Z3

FMoutput

FMz

ΦFService1 = {Z2 ó C, 

(B or C) implies not Z2} 

1 Compatibility 

Checking

FService2:in

:interface

A

C B

FMinput

ΦFService2 = 

{Y2 ó B} 

Y1

Y2 Y3

FMy

Compatibility 

Checking

3

FService2:in

:interface

Y1

Y2 Y3

FMy

A

B

ΦFService2 = 

{Y2 ó B} 

Constraint 

Propagation

4

FService2:in

:interface

Y1

Y2 Y3

FMy

A

B

ΦFService2 = 

{Y2 ó B} 

FService1
:out

:interface

Z1

Z4 Z3

FMz

ΦFService1 = {Z2 ó C, 

(B or C) implies not Z2} 

A

B

2
Constraint 

Propagation

Figure 10.8: An example: reiterating compatibility checking and constraints propagation.

10.2 REALIZATION AND TOOL SUPPORT

The approach proposed is comprehensively supported by a combination of dedicated tools
and DSLs. The goal is to assist users at each step of the process – from workflow design to
configuration of each of its constituent parts – described in Figure 10.1.

10.2.1 Workflow Modeling

The first activity is to design a workflow (see À of Figure 10.1). We rely on the GWENDIA
language (see Section 10.1.2), which proposes two concrete syntax, a graphical representa-
tion and a textual representation, and supports all the workflow constructions mentioned
in Figure 10.2. Using GWENDIA, scientists can specify a workflow including all data con-
nections (see left upper part of Figure 10.9).

To specify the variability requirements, we choose to develop a simple and dedicated
formalism to relate feature models to services and workflows. The DSL, called Wfamily
(see right upper part of Figure 10.9) enables one to:

• import feature models from external files while performing some high-level oper-
ations (extraction, renaming/removal of features, etc.). For example, the user can
load an existing feature model from a catalog, then extracts the sub-parts that are of
interest and finally specialize the different feature models ;
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GWENDIA Workflow  Wfamily DSL

workflow {
        file="examples/asclepios/asclepiosQuality.gwendia.xml" 
        
        service "Brain extraction" {
                fmData {
                        fmInterface = FM ("examples/asclepios/brainextract/interface.fml")
                        fmInput = FM ("examples/asclepios/brainextract/input.fml")
                }
                weave fmInterface into interface

                
                map segmentationBrain fromCatalog "segmentationBrain.fml"
        }
        

        

                

        

        service "Non-linear registration" {

                

                fmData {

                         fmInput = FM ("examples/asclepios/nonlinearregistration/input.fml") 
                }

                weave fmInput into fixed
                weave fmInterface into interface

                map registrationBrain fromCatalog "registrationBrain.fml"
        }
        
        constraints {

                Motion.fmInput.A -> !BiasCorrection.fmInput.H
                Motion.fmInput.A and BiasCorrection.fmInput.I
        }

        

}

                weave fmInput into in

run "segmBrain1.fml"
run "segmBrain2.fml"
run "segmBrain3.fml" 
run "segmBrain4.fml" 

foreach (sgm in segmBrain*) do
        fmi = extract sgm.MedicalImage
        // rename features of fmi with prefix "Output"
        foreach (ft in fmi.*) do 
                nameFt = name ft
                newFtName = strConcat "Output" nameFt
                renameFeature ft as newFtName
        end
        rootSgm = root sgm
        insert fmi into rootSgm with opt
end

                                                              

                            segmentationBrain = merge sunion segmBrain* 
segmentationBrainCommon = merge intersection segmBrain*

// catalog

run "catalog.fml" into catalog

// we map workflow services Segm and Reg to the catalog

fmO = copy catalog.MSPL_Segm // fmO corresponds to the Output of Segm

fmI = copy catalog.MSPL_Reg // fmI corresponds to the Input of Reg

// we check the compatibility relation between Segm and Reg

fmR = merge intersection { fmO fmI }

if (not isValid fmR) then

        println "Services are *not* compatible"

else

        println "Services are compatible"

end

// we can configure

// we can add constraints btw feature models (e.g., of the same service)  
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Figure 10.9: Tool support and Domain-Specific Languages.

• weave feature models to specific places of the workflow. We reify the concept of point-
cut, which have an unique identifier within a service. Hence users can specify for
which specific pointcut of a service a feature model is attached to ;

• constrain feature models within and across services by specifying propositional con-
straints. Each feature model that have been woven has an unique identifier and can
be related with each other through cross-tree constraints.

10.2.2 Reasoning about Variability with FAMILIAR

FAMILIAR is also used in the following situations:
• to specify variability requirements within services (cf. Á and Â of Figure 10.1): FA-

MILIAR is embedded into the DSL Wfamily described above. As a result, extracting a
sub-feature model from a feature model in a catalog essentially consists in reusing
FAMILIAR operators ;

• to build catalogs of services, organized as reusable scripts: feature models that doc-
ument variability of services are merged together ; similarly, querying a catalog of
services is realized using FAMILIAR scripts (cf. Ã of Figure 10.1) ;

• as a target language. FAMILIAR code is generated from the workflow analysis, for
example, to reason about dataport compatibility (cf. Ä of Figure 10.1).
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The FAMILIAR code is then interpreted to check the consistency of the whole workflow,
to report errors to users as well as to automatically propagate choices (cf. Á and Â of
Figure 10.1). Users can incrementally configure, using graphical facilities provided by
FeatureIDE editors, the various feature models of the workflow (cf. Å of Figure 10.1).
Finally, in order to derive a final workflow product, competing services can be chosen from
among sets of services in the catalog using FAMILIAR reusable scripts (cf. Æ of Figure 10.1).

10.3 DISCUSSION AND EXPERIMENTS

10.3.1 User Assistance and Degree of Automation

Organizing the workflow construction with SPL engineering techniques leads to a shift
in the process. The activities are then well targeted for each kind of stakeholder. The
service provider documents variability once and for all, the catalog maintainer handles
all available services over time and the workflow designer can focus on its construction
activity. It must also be noted that our proposed approach is heavily relying on the service
catalog, so that the effort of building it is compensated. The catalog is indeed used both
to assist the expert, when determining his relevant concerns — which is more error-prone
when specified from scratch —, and to incrementally enforce consistency.

A first assistance to the user is provided when he/she can select an appropriate service
from among sets of existing services. He/she may also want to search services matching
several criteria to determine whether at least one service can fulfill a specific feature or
a set of features. During the process, if the variability manipulated by the user leads to
some inconsistency but is considered to be more important than the workflow structure,
the user has to correct the workflow itself. Using our approach, such inconsistencies are
automatically and systematically detected and several correction strategies can be applied.
The separation of concerns provides the ability to precisely locate the source of errors and
to give information to assist users in correcting the workflow: choose another service,
correct an applied concern, relax some variability description, configure differently some
services.

Properties of the merge operator can then be exploited. The various compositions of
feature models may be performed in any order because of the associativity property of
the merge operator. Heuristics, such as merging larger feature models first, can thus be
planned to detect an earlier source of errors. The merging between feature models con-
tributes to decrease the number of remaining variability choices presented to the user.
Indeed an additional property of the merge in intersection mode is that the number of
features of the resulting feature model is lesser than or equal to the number of features
commonly shared by input feature models. This property can dramatically reduce the set
of configurations to be considered by the user during workflow configuration. As a result,
it is likely that the amount of time and effort needed during the configuration process can
be reduced (see experimental results below).

As for the process automation, it ranges from the catalog building to the resulting work-
flow product. First, taking all service variability descriptions, the catalog of services is au-
tomatically generated. During the workflow construction and configuration, all assisted
steps discussed before are coupled with incremental and automatic consistency checking.
The specified concerns over services are extracted from the catalog with the guarantee to
be consistent subsets. After having been woven to services, their consistency according
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the workflow is automatically checked. When the resulting workflow is configured, the
automatic propagation of constraints among feature models representing the concerns is
conducted, ensuring again consistency while reducing the user burden. Finally, as the
variability of services may evolve over time, the complete process can be easily replayed
to check again the consistency with additional or modified concerns.

10.3.2 Experiments

Application to Three Real Workflows. Using the tool support described in Section 10.2,
we have applied the proposed approach to three real medical imaging workflows, the
Alzheimer’s disease workflow [Lorenzi et al. 2010], a cardiac analysis workflow [Mahesh-
wari et al. 2009], and a workflow for determining the quality of a segmentation algo-
rithm [Pernod et al. 2008]. The number of services that constitute the three workflows
varies from 9 to 24 (see #services in Table 10.2), so that experiments are conducted on
different scales8. We consider scenarios in which the workflow designer augments the
workflow description with feature models and constraints. As we want to determine the
ability of our approach to handle compatibility constraints between services, we count the
number of active dependencies (see #active). A dependency between two connected ser-
vices is active when there are feature models related to the same concern on both sides,
so that these feature models have to be merged. This number is lesser or equal than the
number of data dependencies (see #dependencies) since feature models are not necessary
attached to all dataports.

In Table 10.2, the total number of feature models (see #FMs), features (see #features),
core features (see #cores), variation points (see #VP) and configurations9 (see #configu-
rations) in the initial workflow description are reported for the three workflows. Core
features refer to features necessary included in any configuration whereas variation points
refer to features whose selection/deselection still needs to be fixed. In order to determine
how the proposed automated reasoning reduces the number of variation points (thus the
number of valid configurations) and possibly facilitates the decision-making process, the
same metrics are reported after the reasoning mechanism.

The first experiment concerns the workflow described in [Lorenzi et al. 2010]. This
workflow is rather small (composed of 9 services) and 16 dependencies between data ports
are present. We wove 12 feature models (using the catalog of feature models) into work-
flow services but not into Atrophy measure and Mask Calculation services. As a result, 9
compatibility constraints were detected (see #active). We did not edit the feature models
and we only specified some intra-constraints services. Applying the reasoning mecha-
nisms significantly reduced the number of variation points (from 79 to 32) and the number
of configurations (from 1012 to 104).

For the second experiment, we used the cardiac analysis workflow described in [Ma-
heshwari et al. 2009]. The management of variability was focused on data pre-treatments
so that we only wove 8 feature models and we deliberately did not consider other parts of

8The size of scientific workflows varies depending on the domain (e.g., bioinformatics, medical imaging). In
the medical imaging domain, the presence of 24 services can be considered as a large workflow, even though
larger workflows have been developed.

9The number of initial configurations is computed by considering feature models without inter-
/compatibility constraints.
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1. Alzheimer’s 2. Cardiac 3. Segmentation
disease analysis evaluation

Input workflow
#services 9 14 24
#dependencies 16 20 41
#active 9 6 19

Initial specification

#FMs 12 8 25
#features 131 97 286
#cores 52 43 110
#VPs 79 54 176
#configurations 1012 109 1025

After reasoning

#features 104 79 213
#cores 72 48 146
#VPs 32 31 67
#configurations 104 105 109

Table 10.2: Experimental results on three scientific workflows.

the workflow. We specialized the format of the image sources before propagating choices.
Again we observe a noticeable reduction of variability points.

For the third experiment, we used a larger workflow (cf. [Pernod et al. 2008]) in which
24 services are combined to evaluate segmentation. A noticeable property of this work-
flow is that 6 registration services and 5 normalization services are used. We thus made
an extensive use of the catalog. Again, we did not edit the feature models and we only
specified some intra-constraints services. The reduction of variation points is even more
significant (from 176 to 67), mainly because of the large number of data dependencies (41)
that are automatically handled by our approach.

As a result, these experiments show that the reasoning mechanisms developed for sup-
porting consistent composition of multiple SPLs significantly reduces the high complexity
to be managed by the workflow designer. Larger experimental validations should confirm
these first results.

Practical Experience. We design an experiment in which different users from the Neu-
roLOG project should design and configure a workflow without our techniques and then,
for the sake of comparison, with our techniques. The input of the experiment is as follows:

• a medium-size, GWENDIA workflow (see Figure 4.1, page 37) that consists in 9 pro-
cesses (only 5 processes, Affine Registration, Brain Extraction, Longitudinal intensity cor-
rection, Tissue segmentation and Non-linear registration, have to be configured in the
experiment) ;

• a description of about 80 existing services according to different criteria. We con-
sider two categories of criteria: the first category concerns medical images (e.g., med-
ical image format supported as input/output), the second category concerns medical
imaging algorithm (e.g., affine or non affine transformation). For this experiment, the
average number of features to consider per service is around 30. Semi-structured,
tabular data are used for the description of variability services in terms of features
and stored in the CSV (comma-separated values) format. To facilitate the identifica-
tion of services, we group together similar services that are candidate to implement
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a process ;
• a document describing in natural language the requirements of the application and

the constraints of the workflow. Three scenarios are described in the document: the
first scenario simply consists in selecting five services while ensuring data compat-
ibility ; the second scenario is similar to the first scenario except that some require-
ments on the anonymization of images are added ; the third scenario involves more
constraints (e.g., formats of images that can be used are restricted to two predefined
alternatives and no interactive algorithm can be used).

The challenge for users is to have, at the end of the experiment, a workflow in which
appropriate services are consistently combined. We report below our observations and
lessons learned.

Effort and Time Needed. In the experiment, users have to consider a large number of can-
didate services (80) for a large number of features per service (30), so that the total number
of distinct features10 to consider is more than 200. At this scale, the configuration process
turned out to be impractical without adequate support. In particular, a manual config-
uration process (e.g., based on "trial and error" strategy) should be avoided as it is both
error-prone, laborious and time-consuming. The observation applies to two specific tasks
of the workflow design. Firstly, when users have to select a service from among the set of
existing services, the main difficulty comes from the fact that some features from different
concerns interact (e.g., the selection of the format DICOM may imply the selection of an
Interactive algorithm), which is not straightforward to identify. In addition, users complain
from the lack of querying operations, for example, to filter the set of services that fulfills
specific requirements. Secondly, when users have to ensure that services are data compat-
ible, multiple variability descriptions are to be considered for resolving complex features’
interactions. The difficulties we observed are not surprising. The satisfiability of a feature
model is known to be a difficult computational problem, i.e., NP-complete [Schobbens
et al. 2007] and in our case, not only one feature model has to be considered. Several au-
thors claim that in real software projects, there can be thousands of features whose legal
combinations are governed by many and often complex rules [Mendonça 2009, Mendonca
and Cowan 2010, Hubaux et al. 2010b, Janota 2010] – the design of scientific workflows ex-
hibits similar complexity. As argued by the same authors, it is thus of crucial importance to
be able to simplify and automate the decision-making process as much as possible [Men-
donça 2009, Mendonca and Cowan 2010, Hubaux et al. 2010b, Janota 2010]. Our observa-
tions and case study reinforce this requirement. Our tool-supported approach does assist
the user when he/she can select an appropriate service from among sets of existing ser-
vices (thanks to the construction of catalog of feature models) and propagate variability
choices (thanks to automated reasoning techniques). Once the catalog of feature models
has been built and the variability has been specified at the workflow level, the time and
effort needed to complete the configuration process are significantly reduced so that their
activities become manageable.

In addition, the three scenarios of the experiments can be realized in a similar fashion.
We just reuse the catalog of feature models and modify the original script Wfamily devel-
oped for the first scenario to fulfill the new requirements. The costly process (in time and
in user effort) is related to the construction of catalog of feature models and development

10Two features are considered distinct if their names are distinct.
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of Wfamily script. For this experiment, the construction of catalog of feature models was
highly facilitated by i) the identification and grouping of similar services, ii) the use of a
common terminology and hierarchy of features to described services. The development of
Wfamily script was more laborious due to the costs of i) of learning a new language and ii)
understand the ideas behind the approach.

User Assistance and Correctness. A manual attempt for configuring the workflow leads to
several errors that must be corrected, without adequate assistance. In addition, a manual
checking that determines whether a selection/deselection of features is correct (i.e., does
not violate any constraint of the workflow and corresponds to at least one existing ser-
vice) was proved to be not satisfying (i.e., confidence about the solution was too low). An
important benefit of using automated techniques based on a sound basis is that we can
assist users at each step of the configuration process while guaranteeing properties of the
designed workflow. FAMILIAR (and thus the underlying implementation of the approach)
rely on SAT solvers or BDD. It has been shown that both SAT solvers and BDD can be
used to implement an interactive configuration process, where the computer provides in-
formation about validity of choices each time the user makes a new choice – this feedback
typically takes the form of graying out the possibilities that are no longer valid [Mendonça
2009, Janota 2010]. Moreover a configurator can infer which choices are valid and which
are not at each step of the process.

Flexibility. Another drawback of a non tooled-approach was the lack of flexibility in select-
ing an appropriate service. Although finding one appropriate service can be sufficient, it
is more preferable to have the choice between several candidate services, for example, to
favor services that have been developed by a specific research team. Advanced querying
operations were thus identified as important when designing the workflow. Our tool-
supported approach supports a proper management of variability and the ability to infer
which existing services are no longer able to fulfill the requirements.

10.4 SUMMARY

Building service-oriented scientific workflows mainly consists in first selecting some ap-
propriate services from all available parameterized services, then configuring and assem-
bling them in a consistent way. In many application domains, these activities are cum-
bersome and error-prone, and this hampers current development efforts in computational
science. In this chapter, we introduced a rigorous and tooled approach that extends current
SPL engineering techniques to facilitate and automate consistent workflow construction.
This approach assumes that a variability-aware catalog was originally built to organize
highly-parameterized services provided by different suppliers (as we described in Chap-
ter 6).

The following contributions were presented:
• A multi-step process to obtain a consistent workflow was also detailed. Taking a ba-

sic description of the workflow, it consists in specifying different variable concerns
(ranging from functional parameters to non-functional properties or deployment
specificities) on one or more services. Constraints within or between concerns can
be added and all these elements are incrementally checked for consistency against
the service catalog. The workflow is then seen as a multiple SPL which composes the
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SPLs of services. Configuration is assisted, consistency checking and propagation are
incremental and automated, so that a consistent workflow product is obtained. Evo-
lution of both the services and their variable parts is also supported by the approach.
Moreover this process completely rests on a sound formal basis realized by feature
model management operators and FAMILIAR, so that generic parts of the process can
be more easily reused in other context.

• An overview of the implementation and user-oriented tool support has also been
given. Besides illustrations were provided using a non trivial example in the repre-
sentative domain of medical image analysis. Additionally, first experimental results
have been discussed in terms of user assistance and degree of automation. These
experiments show that the reasoning mechanisms developed for supporting consis-
tent composition of multiple SPLs reduces the high complexity to be managed by
the workflow designer. Nevertheless, a more comprehensive tool support, including
graphical facilities, is needed as well as the conduct of further experiments to confirm
these first results.





Eleven

Modeling Variability From Requirements to
Runtime

This chapter shares material with the ICECCS’11 paper "Modeling Variability from Re-
quirements to Runtime” [Acher et al. 2011g], the ICVS’2011 paper "Run Time Adaptation
of Video-Surveillance Systems: A Software Modeling Approach" [Moisan et al. 2011], the
Models@run.time’09 paper "Modeling Context and Dynamic Adaptations with Feature
Models” [Acher et al. 2009a] and the MiSE’09 paper "Tackling High Variability in Video
Surveillance Systems through a Model Transformation Approach" [Acher et al. 2009c].
This work is based on a collaboration with Jean-Paul Rigault and Sabine Moisan (PUL-
SAR project-team, INRIA).

11.1 VARIABILITY OF DYNAMIC, COMPLEX SOFTWARE SYSTEMS

Problem and Overview of the Approach. Video-surveillance processing chains are com-
plex software systems, exhibiting high degrees of variability along several dimensions.
From a technical and software perspective, the number of components, their variations
due to choices among possible algorithms, the different ways to assemble them, the num-
ber of tunable parameters, etc. make the processing chain configuration rather challenging.
Moreover, the number of different applications that video-surveillance covers, the envi-
ronments and contexts where they run, the quality of service that they require increase the
difficulty. Finally the context of an application may (and does) change in real time, at run-
time, requiring dynamic reconfiguration of the chain. To make things even more complex,
these variability factors are not independent: they are related by a tangled set of strong
constraints.

This huge variability raises problems at design time (finding the configurations needed
by the chain, foreseeing the different possible contexts), at deployment time (selecting
the initial configuration), and at run time (switching configurations to react to context
changes). In order to deploy the software solution, the engineering effort can last from one
week to several months. There are several reasons. First, reasoning directly at the level
of software components is far from obvious, even for an expert, since selecting among the
software choices must respect a large number of constraints (e.g., night surveillance in nat-
ural light necessitates specific algorithm). This can be seen as an instance of the traditional
gap that exists between the problem space and the solution space (see Chapter 2). Second,
an unique characteristic of dynamic, self-adaptive software systems, such as video surveil-
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lance systems, is that, at runtime, only a small part of the model related to requirements
has to be kept – for example, features related to the context – so that this sub-model can be
efficiently used to pilot self-adaptation mechanisms. Although technical know-how may
help to reduce possible choices, it is difficult to determine which combination of artifacts
remain valid at runtime according to the various possible contexts (e.g., lighting conditions,
information on the objects to recognize).

In this chapter, we focus on the problem at design and deployment time with the
purpose of modeling variability. The realization of variability or how configurations are
changed at runtime to react to context events are out of the scope of this chapter. We con-
sider that approaches and techniques to support product derivation at runtime can be ap-
plied in the context of this contribution, for instance, using the results of the DiVA1 project
which intends to manage dynamic variability in adaptive systems with the combined use
of aspect-oriented and model-driven techniques [Morin et al. 2009b;a].

To tackle our problem, we follow a model-based approach in which both variability
spaces are described through two feature models ; the first one describes the domain and
the related requirements, while the other one is an abstract representation of the code. The
relationships between variants are described as propositional rules relating features either
in the same model or across models. Such an approach is somehow similar to other related
work that promotes the (systematic) use of feature models [Kang et al. 1998, Hartmann and
Trew 2008, Metzger et al. 2007, Tun et al. 2009].

We propose here a modeling process in which the feature models are systematically used
and step-wise specialized, from requirements to runtime. Consequently, from a domain
expert specification, the possible configurations space is highly reduced, as no more valid
platform configurations can be automatically removed by transformation. We present
techniques, based on propositional logic and fully supported by FAMILIAR, to assist SPL
practitioners in the deployment of video surveillance processing chains while ensuring
the end-to-end consistency of the manipulated models.

Video Surveillance Systems. Taking Video Surveillance (VS) as a representative domain
of dynamic, adaptive systems, we now determine our motivating issues. The purpose of
VS is to analyze image sequences to detect interesting situations or events. Depending
on the application, the corresponding results may be stored for future processing or may
raise alerts to human observers. There are several kinds of VS tasks according to the sit-
uations to be recognized: detecting intrusion, counting objects or events, tracking people,
animals or vehicle, recognizing specific scenarios, etc. Apart from these functional charac-
teristics, a VS task also sports non functional properties, such as quality of service: typical
criteria are robustness, characterized by the number of false positive and negative detec-
tions, response time, or recognition accuracy. As a matter of examples, intrusion detection
may accept some false positives, especially if human operators are monitoring the system;
counting requires a precise object classification; recognizing dangerous behavior must be
performed within a short delay.

Moreover, each kind of task has to be executed in a particular context. This context
includes many different elements: information on the objects to recognize (size, color, tex-
ture...), description and topography of the scene under surveillance, nature and position
of the sensors (especially video cameras), lighting conditions... These elements may be

1http://www.ict-diva.eu/

http://www.ict-diva.eu/
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related together, for example, an indoor scene implies a particular lighting. They are also
loosely related to the task to perform since different contexts are possible for the same
functionality. For instance, intrusion detection may concern people entering a warehouse
as well as pests landing on crop leaves.

The number of different tasks, the complexity of contextual information, and the rela-
tionships among them induce many possible variants at the specification level, especially
on the context side. The first activity of a video surveillance application designer is to sort
out these variants to precisely specify the function to realize and its context. Then the de-
signer has to map this specification to software components that implement the needed
algorithms.

At the implementation level, a typical VS processing chain (Figure 11.1) starts with
image acquisition, then segmentation of the acquired images, clustering, to group image
regions into blobs, classification of possible objects, and tracking these objects from one
frame to the other. The final steps depend on the precise task. Additional steps may be in-
troduced, such as reference image updating (if segmentation steps need it), data fusion (in
case of multiple cameras) or even scenario recognition. All steps correspond to software
components that the designer must correctly assemble to obtain a processing chain. More-
over, for each step, many variants exist, along different dimensions. For instance, there are
various classification algorithms with different ranges of parameters, using different ge-
ometrical models of physical objects, with different merge and split strategies to identify
relevant image blobs. The situation is similar for the other algorithms.

Image 
acquisi0on 

Segmenta0on 
Clustering 

Classifica0on 
Frame to frame 

analysis 

Task 
dependent 
process 

Physical 
objects Blobs 

Reference image 

Events 

Alerts 
Raw image 

Figure 11.1: A simplified video surveillance processing chain

The domain of VS is now mature enough to provide components covering all classical
steps and to provide unifying and stable frameworks to compose them, such as the plat-
form used in this case study [Avanzi et al. 2005]. However these frameworks can only be
mastered by video analysis specialists. The specification phase is not supported by tools,
and component assembly seldom is. Thus designers work directly at the component as-
sembly level, following an informal view of the specification. As a consequence, there is
no guarantee that specification and implementation are consistent and that internal depen-
dencies are respected, at specification as well as implementation level; moreover, tracing
between specification and implementation is hard. Hence, designing a video surveillance
system faces typical difficulties of current information systems in which domain and appli-
cation engineering must be cleverly combined. Indeed this requires to cope with multiple
sources of variability, both on the task specification side and on the implementation one.
To bridge this gap, designers must have an extensive experience of the application domain
as well as a deep knowledge of the software components. Yet the process remains tedious,
error-prone, and possibly long.
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11.2 MODELING VARIABILITY

Domain and Software Variability. In the VS case, we have multiple variability factors,
both for specifying an application and for describing the software platform. On the plat-
form side, stakeholders manipulate solution-oriented artifacts. There, variability is en-
tirely related to the software and refers to "the ability of a system to be efficiently ex-
tended, changed, customized or configured for use in a particular context" [Svahnberg
et al. 2005]. The software variability is expressed in a dedicated FM, called the PlatForm
Configuration (PFC) model representing a view of implementation modules provided by
the software platform. For deriving an actual product, we advocate the use of domain
knowledge which contains relevant information to reason about and to select among vari-
ants at a higher level of abstraction. The domain variability is expressed through the Video
Surveillance Application Requirement (VSAR) model which comprises, in our case, the task
specification, the scene context, the object of interests, the Quality of Service (QoS).

Separation of Concerns. One option would be to transfer VSAR variability (e.g., all the
possible variations in the context) into the PFC model, thus concentrating variability in
one unique model. A major drawback is then to swamp domain variability concerns with
the mass of platform details. Our approach is rather to separate variability concerns into
two interrelated FMs: the VSAR FM represents the experts’ business knowledge while the
PFC one deals with the platform implementation. This separation of concerns offers sev-
eral benefits. Each variability model addresses a different level of expertise. On the re-
quirement side, users can follow their usual practices, use the domain vocabulary, and the
specific definition of variation types. Confining the variability in a dedicated space thus
improves the modeling process. During the application engineering process, users can
take decisions only related to their know-how and domain. The impact of a modification
in the platform model (e.g., code module added) or in the VSAR model (e.g., object of in-
terest added) is clearly localized. Co-evolution and maintenance of both variabilities are
facilitated.

We now describe more precisely the two VSAR and PFC models, together with transfor-
mation rules relating features of the two FMs.

VSAR model. Figure 11.2 (upper part) shows an excerpt of the FM corresponding to the
VSAR side. This model describes the relevant concepts and features from stakeholders’
point of view, in a way that is natural in the VS domain. To enforce separation of concerns,
we identified four top level features. The Task feature expresses the precise function to
perform. QoS corresponds to the non-functional requirements, especially those related to
quality of service. Then, we need to define the Objects of interest to be detected, together
with their properties. Finally, Scene context is the feature with the largest sub-tree; it de-
scribes the scene itself (its topography, the nature and location of sensors) and many other
environmental properties (only some of them are shown on the figure). In this model,
the (sub-)features are not independent, for example, selecting a feature may impact other
choices. Thus, we have enriched the feature models by adding internal constraints to cope
with relations local to a model. So far, we have identified two kinds of constraints. Choos-
ing one feature may imply or exclude to select another specific one. For example, if feature
Counting is selected, this implies high precision and thus a Field Of View which is a Large
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Angle (among others). The intra-constraints in the VSAR model show a strong dependency
between the four top level features which confirms the need for integration into the same
variability model.

PFC model. All steps of the VS processing chain correspond to software components that
the designer must correctly assemble to obtain a coherent processing chain. A mandatory
task is to acquire images. Then, for each step, many variants (e.g., alternative algorithms)
exist. The platform FM describes the different software components of the platform, their
parameters and their assembly constraints. Figure 11.2 displays a highly simplified form
of the corresponding model. As shown, the top level features mainly correspond to the
different steps of the processing chain. The figure focuses on the segmentation step. Simi-
larly to the previous model, we also need to introduce internal constraints. They have the
same form as before. For instance, Edge segmentation implies a thin image discretization,
thus a Low Grid Step (see constraints related to PFC model in Figure 11.2).

Transformation Rules. Besides internal constraints, there are other constraints across mod-
els. These inter-model constraints make dependencies and interactions between features
explicit by mapping the task specification to the software implementation. More impor-
tantly, such constraints prevent forbidden combinations of features, thus dramatically re-
ducing the configuration sets. In our approach, these constraints correspond to model
transformations from the VSAR model to the PFC model. They allow deriving automati-
cally, or semi-automatically, a suitable processing chain from an application specification
(see next Section). For instance, a Top View implies the use of both an Ellipse and a 3D
model to describe persons (see transformation rules in Figure 11.2).

11.3 FROM REQUIREMENTS TO DEPLOYMENT AND RUNTIME

The platform feature model compactly represents the set of software configurations avail-
able for each category of components that can be activated to achieve the tasks of the pro-
cessing chain. This is highly desirable for VS applications to cope with possible runtime
change of implementation triggered by context variations. The goal is at runtime to de-
ploy a VS processing chain able to adapt its configuration according to a valid contextual
information. A key idea is that only a specialized feature model of VSAR is needed since
the context features that may influence the runtime execution of the system is most of the
time only a part of the VSAR feature model. We recall that a feature model f is a special-
ization of another feature model g iff JfK ⊂ JgK. If f has been produced from g and f is a
specialization of g, we say that f is a specialized feature model of g.

11.3.1 Process

In Figure 11.3 we present a process together with sound formal basis to support rigor-
ous reasoning and assist stakeholders until the application is deployed. In this Figure, we
show also the behaviour when adaptations are performed at runtime and the operations
required to ensure systematic consistency and end-to-end transformation. The two stake-
holders (VS expert and software application engineer) of the approach interact with the
feature models during modeling (see Ê), specialization (see Ì and Í) and transformation
(see Î).
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Figure 11.3: From Requirements to Deployment and Runtime: Process

During the elaboration activity, the two feature models and rules are designed by the
VS expert and the software application engineer. A precondition to the configuration pro-
cess is that feature models and rules are both consistent, individually as well as considered
altogether Ë. It means that each feature model contains at least one valid configuration and
that transformation rules have no contradictions. It is possible that each feature model is
consistent individually whereas putting them together and applying rules leads to incon-
sistencies.

Once checked consistent, the two feature models are then edited, independently, dur-
ing the specialization process. The specialization process conducted by the VS expert con-
sists in a sequence of edit operations on the VSAR model, for example, the removal of an
optional feature. The VS expert produces a new VSAR model, say Y, so that Y is a special-
ized feature model of VSAR.

The VS expert reasons over a complex set of constraints and typically removes the
desired features over a series of steps, rather than in a single iteration. It is thus important,
not to say mandatory, to ensure that each edit operation does specialize VSAR (Ì).

Once checked, the specialization edits achieved on VSAR or PFC can lead to the auto-
matic simplification of both feature models. For instance, when users decide that a feature



172 CHAPTER 11. MODELING VARIABILITY FROM REQUIREMENTS TO RUNTIME

of an Xor-group is necessary included in any configuration of a feature model, the other
features of the Xor-group cannot be selected and are no longer included in the feature
model. An automated support for i) systematic specialization checking and ii) propaga-
tion of edits allows the VS expert to prevent unauthorized choices and better understand
consequences of his/her decision at each step. At the end of the specialization process,
the VS expert gets a specialized VSAR feature model where some parts still exhibit some
variability (e.g., contextual information) and some other parts have been fully configured
(e.g., object of interest).

From now, the VS expert can trigger the automatic transformation Î. We propose a
transformation operator transform that takes as input VSAR, PFC and the transformation
rules, rules.

transform : VSAR × PFC × rules →
{

VSARspe × PFCspe

⊥

Let V Sfull be the aggregation of VSAR, PFC and rules, FVSAR the set of features of VSAR
and FPFC the set of features of PFC. The operator computes two feature models, VSARspe

and PFCspe, such that

JVSARspeK = { x ∈ JV SfullK | x ∩ FVSAR }

and

JPFCspeK = { x ∈ JV SfullK | x ∩ FPFC }

By construction, VSARspe (resp. PFCspe) is a refactoring or a specialization of VSAR
(resp. PFC). The operator is a partial function since the two feature models together with
rules can be inconsistent. The transformational intent is to propagate edits to related feature
models. The transformation operator reasons at the configuration level and tries to select
or eliminate automatically undecided variability choices in VSAR and PFC. This is similar
to what is presented in Section 7.4.1 where we show how to update feature model views
using the corrective capabilities of the slice operator.

One of the result of the transformation, PFCspe, is a specialization of the platform feature
model. A set of variability choices still needs to be resolved in this model before being
deployed Ì. In some deployment scenarios, the PFC model of the VS processing chain has
also to be manually fine-tuned by the software engineer, during a specialization process
Í, as similarly done by the VS expert. The specialization processes can be reiterated by the
two stakeholders.

When the application is run for the first time, the variable contextual information is set
and an initial configuration of the VSAR model is produced (Ï). This leads to the genera-
tion of an initial configuration for the PFC model thanks to a transformation (Ð), and the
corresponding software platform configuration is finally generated (Ñ). At runtime, the
VSAR contextual information can be changed according to modifications of the real envi-
ronment, enabling dynamic self-adaptation of the running system configuration. As stated
early, this step is out of the scope of this chapter.
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11.3.2 Supporting the Process

At different steps of the modeling process, we need to reason about the VSAR feature model,
the PFC feature model, and both of them together with the transformation rules. Manually
checking properties of the feature models is clearly not an option. The automated tech-
niques that have already been described and developed in the previous chapters can be
directly reused. Naturally we rely on FAMILIAR to support the proposed process.

Modeling variability. First, VSAR and PFC feature models are specified separately, using
either the FAMILIAR notation or by importing feature models from different formats (e.g.,
FeatureIDE, TVL). Internal constraints are specified either during the specification or, in a
modular way, using the aggregate operator. We only show here the VSAR model (handling
of the PFC model is similar):

1 scene_fm = FM (Scene : AprioriKnowledge Environment;
2 Environment: [Noise] LightingConditions ;
3 Noise: [BackgroundMovement] [LightingVariation] ;
4 ... ; LightingConditions: (Indoors |
5 Outdoors | LightingType)+ ; ... ; )
6 ooi_fm = FM (ObjectOfInterest: Cardinality ... ;
7 Cardinality: (SingleObject | GroupOfObjects) ; )
8 QoS_fm = FM (QualityOfService: (ComputerLoad
9 | ResponseTime |Quality)+ ; ... ; )

10 task_fm = FM (Task : (Counting | BehaviourRecognition
11 | Tracking |...); ... ; )
12 VSARrules = constraints ( Counting -> Large & Precision
13 & VingtCinqFrSec; NaturalLight & Night ->
14 Infrared & !Large ; ... ; )
15 VSAR_fm = aggregate { task_fm ooi_fm scene_fm QoS_fm }
16 withMapping VSARrules

Consistency Checking. Once the two feature models have been developed, transformation
rules are specified and then mapped to features using a generic script, also implemented
using the modular capabilities of FAMILIAR. The script produces a new feature model that
can be further analyzed. During the elaboration of the feature models (see À in Figure 11.3),
the presence of dead features can be considered as an error since it introduces an incor-
rect definition of relationships that does not match the intention of the feature models’
developers. As a result, the script detects the errors and reports back to the user.

1 VSAR_fm = FM ("VSAR.fml")
2 PC_fm = FM ("PFC.fml")
3 // transformation rules
4 trRules = constraints (Counting -> ReferenceImageUpdating
5 & LowGridStep; Night & HeadLight -> HeadLightDetection ;
6 Flashes | HeadLight -> Contour ; LessPrecision ->
7 (GridStep | WithWindow) & !SegmFineTune;
8 ArtificialLight <-> ScenarioRecognition ; ... )
9 run "generic_transfo" { VSAR PFC trRules }

10 assert (size (deads deployment_fm) == 0)
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The generic script follows: It checks that there exists at least one valid configuration
to ensure that the transformation rules do not lead to contradictory relations and detects
dead features (if any).

1 // generic_transfo.fml
2 parameter fm1 : FeatureModel
3 parameter fm2 : FeatureModel
4 parameter rules : Set
5 global_fm = aggregate { fm1 fm2 }
6 withMapping rules
7 assert (isValid global_fm)
8 deads_global = deads global_fm
9 if size deads_global > 0 then

10 println "Dead features detected’’
11 // we can enumerate the dead features
12 // ...
13 end
14 export global_fm

Reachability Checking. Before the execution of a system, feature models are used to verify
important properties. Among others, we want to guarantee the reachability property, i.e.,
that for all valid specifications and contexts, there exists at least one valid software config-
uration. In terms of feature models, the reachability property can be formally expressed as
follows:

∀c ∈ JVSARK, c ∈ JΠFVSAR
(V Sfull)K (11.1)

Π is the slicing operator described in Chapter 7. The reachability property 11.1 is sim-
ilar to the realized-by property defined in Section 7.4.4 and the same techniques are thus
reused:

1 VSFull_fm = aggregate { VSAR_fm PC_fm } withMapping trRules
2 VSARp_fm = slice VSFull_fm including VSAR_fm.*
3 cmpVSAR = compare VSARp_fm VSAR_fm
4 if (cmpVSAR neq REFACTORING) then
5 fmVSARDiff = merge diff { VSAR_fm VSARp_fm }
6 unrVSARContexts = configs fmVSARDiff
7 //...
8 else
9 //... all contexts are useful

10 end

A brute force strategy which consists in enumerating all possible specifications and
then checking the existence of a software configuration would be clearly inappropriate,
especially in our case where we have more than 108 valid specifications and more than
106 software configurations. As we have shown in Chapter 7, the combined use of slice,
compare and merge diff are a much more scalable technique. Without these capabilities,
this kind of reasoning would not be made possible for this order of complexity.

Specialization Checking. When the VS expert (resp. software engineer) edits the VSAR
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(resp. PFC) model, we control that edit operations performed do specialize the models,
since some edits to VSAR (resp. PFC) may lead to an arbitrary edit (e.g, when a core feature
is removed). The VS expert (resp. the software engineer) can use different modifier com-
mands to specialize the VSAR (resp. PFC) model (e.g., removeFeature, setMandatory when
translated into FAMILIAR):

1 // automatically generated from the interactive session
2 VSAR_spe = copy VSAR_fm
3 removeFeature VSAR_spe.LightingVariation
4 removeFeature VSAR_spe.Outdoors
5 removeFeature VSAR_spe.Counting
6 setMandatory VSAR_spe.Indoors
7 setMandatory VSAR_spe.Tracking
8 // ...
9 assert ((compare VSAR_spe VSAR_fm) eq "SPECIALIZATION")

Specialization and Transformation Example. Specialization choices in the VSAR feature
model have possible complex consequences on features of the PFC model (and vice versa).
In Figure 11.4, we illustrate the specialization activity and the automatic transformation
using an excerpt of VSAR and PFC feature models and some transformation rules. First, a
video surveillance expert edits VSAR feature model (see À) by removing the feature Shad-
ows and setting the mandatory status to the features Outdoors, Lighting Noise and Person.
As a result, some features no longer appear in VSAR feature model (grey features in Fig-
ure 11.4). Then, the transformation operator takes the new specialized VSAR feature model,
VSAR’, the transformation rules and PFC feature model2 (see Á). Hence several choices are
automatically deduced in the platform feature model: the features Density, Region and
High Density are removed while the features Contour, Lighting Analyses, Omega and Model
become core features.

In FAMILIAR, once the two feature models VSAR and PFC have been edited, leading to
VSARspe, PFCspe, the aggregate and slice operators are used to propagate choices.

1 VSFull_update = aggregate { VSAR_spe PC_spe } withMapping trRules
2 VSAR_spe_update = slice VSFull_update including VSAR_spe.*
3 PC_spe_update = slice VSFull_update including PC_spe.*
4 // ...

Finally, the specialization/transformation process can be reiterated if needs be.

11.4 CASE STUDY AND EXPERIMENTS

To gather some validation elements, we experimented the proposed modeling process on
six deployment scenarios (detecting intrusion into building and a car park, counting per-
sons, etc.) conducted by a VS expert using the FAMILIAR environment. For the experiments,
we only considered the specialization of the VSAR feature model by the VS expert and we
do not take the direct specialization of the PFC feature model into account. The VSAR fea-
ture model used for the experiments had 77 features and its number of valid configurations

2The transformation really produces two feature models but we only depict PFC’ for the sake of brevity.
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Scenario #edits #configurations #cores #removes #VPs
1 13 48384 19 4 28
2 18 106560 18 2 31
3 12 24192 18 4 29
4 18 118656 18 1 32
5 16 32256 24 4 23
6 15 22608 21 2 28

PFC - ≥ 106 13 - 38

Table 11.1: Measurements on the application of the process

was more than 108. The PFC feature model used for the experiments had 51 features and
the number of valid configurations was more than 106. 22 transformation rules were con-
sidered. We checked that the reachability property described above truly holds.

For each scenario, we used the automated techniques described in this chapter to trans-
form PFC feature model into PFCspe given a sequence of edits performed in the VSAR model.
In Table 11.1, we report for each scenario:

• the number of edits specialization performed in VSAR (#edits) ;
• the number of valid configurations in PFCspe (#configurations) ;
• the number of features not present in PFCspe but originally present in PFC feature

model (#removes) ;
• the number of core features present in PFCspe (#cores) ;
• the number of features that remain to be chosen at runtime in PFCspe (#VPs). Note

that #V Ps = 51− (#cores+ #removes).
Results show that for all scenarios, after the specialization and transformation, the

number of valid configurations in PFCspe is significantly less important than the number
of valid configurations in PFC, at least of an order of magnitude. Other criteria give more
precise information about the reduction of variability. In the initial PFC model, there are
13 core features and #VPs=38. The transformation process allows for infering new core
features (see #cores) and removing some others (see #removes).

#removes varies from 4 (Scenario 4 and 5) to 1 (Scenario 4). Therefore only a few fea-
tures are no longer of interest at runtime. #cores varies from 18 (Scenario 2 and 3) to 24
(Scenario 4). It means that at least 5 features and at most 11 features have been bound at
design time. Compared to #removes, the benefits are more significant. #VPs vary from 23
(Scenario 5) to 31 (Scenario 2), that is, at least 7 choices and at most 15 choices are no longer
of interest at runtime.

One of the goal of the modeling process is to reduce the number of features that remain
to be chosen at runtime. With respect to this purpose, a reduction of variability in the
software part has been clearly observed for all scenarios.

Another property of the modeling process is the use of two separated feature models
VSAR and PFC. In all scenarios, several choices have been inferred in the software part
starting from a specification of the VS expert. The use of the VSAR feature model thus
facilitates the specialization of the PFC feature model using high-level, domain-specific
concepts. Nevertheless the exclusive use of the VSAR feature model to specialize the PFC
model is not conceivable. The intervention of the software engineer is somehow required
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(e.g., to fine tuned some parameters). Thanks to the reduction of variability and thanks to
the separation of concerns, he/she can concentrate on his/her domain of expertise while
irrelevant details have been removed.

11.5 SUMMARY

In this chapter, we have presented a process, supported by FAMILIAR, to model the vari-
ability of a dynamic adaptive system from requirements to runtime. The proposed ap-
proach distinguishes between requirements variability and software variability and ex-
plicitly breaks the variability spaces into two feature models. In order to take into account
the interactions between specification and implementation choices the feature models are
interrelated with propositional constraints. Starting from a high level specification (in-
cluding execution environment and context), the set of valid software configurations to be
considered at runtime can be automatically reduced. Before the deployment of the system,
automated techniques can also be used to control that, for all valid execution contexts,
there exists at least one valid software configuration.

The presented contributions are validated on a video surveillance SPL. First experi-
ments show that, following our approach, the configuration spaces are reduced by an or-
der of magnitude, whereas it would not have been possible without. We expect to fully
integrate FAMILIAR in a run time adaptation architecture so that an end-to-end engineering
of the video surveillance SPL can be made possible [Moisan et al. 2011].



Twelve

Reverse Engineering Architectural Feature
Models

This chapter shares material with the ECSA’11 paper "Reverse Engineering Architectural
Feature Models” [Acher et al. 2011a]. This work is based on a collaboration with Anthony
Cleve (University of Namur, Belgium), Philippe Merle, the software architect of FraSCAti,
and Laurence Duchien head of ADAM project-team (INRIA - LIFL CNRS/University of
Lille 1).
In this chapter, we show how the operators of FAMILIAR have been applied to reverse
engineer the variability model of FraSCAti1, a large and highly configurable component
and plugin based system. We develop automated techniques to extract and combine
different variability descriptions of an architecture. Then, alignment and reasoning tech-
niques are applied to integrate the architect knowledge and reinforce the extracted feature
model. We also report on our experience.

12.1 REVERSE ENGINEERING VARIABILITY OF FRASCATI

When SPL engineering principles are followed from the start, it is feasible to manage vari-
ability through one or more architectural feature models and then associate them to the ar-
chitecture (e.g., as shown in [Parra et al. 2010; 2011]). The major architectural variations are
mapped to given features, allowing for automated composition of the architecture when
features are selected. In many cases, however, one has to deal with (legacy) software sys-
tems, that were not initially designed as SPLs. When such a system, like FraSCAti, offers
a large number of variants, with many configuration and extension points, its variability
should be properly managed. A first and essential step is to explicitly identify and repre-
sent its variability, for instance using a feature model.

Reverse engineering the feature model of an existing system is a challenging activity.
The architect knowledge is essential to identify features and to explicit interactions or con-
straints between them. But the manual creation of feature models is both time-consuming
and error-prone. On a large scale, it is very difficult for an architect to guarantee that
the resulting feature model ensures a safe composition of the architectural elements when
some features are selected. Both automatic extraction from existing parts and the architect
knowledge should be ideally combined to achieve this goal.

In this chapter, we illustrate the problem, our proposal and report on experiments with
a case study on the FraSCAti platform [FraSCAti 2011].

1FAMILIAR is now used to manage the development and releases of FraSCAti (see
http://frascati.ow2.org/doc/1.4/ch12.html).
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Figure 12.1: An excerpt of a possible architectural feature model

12.1.1 FraSCAti: the Need for Handling Variability

FraSCAti is an open-source implementation of the Service Component Architecture (SCA)
standard [SCA standard 2007], which allows for building hierarchical component architec-
tures with the potential support of many component and service technologies.

Started three years ago, the development of the FraSCAti platform begun with a frame-
work, first validated by a basic implementation of the standard, and then incrementally en-
hanced. After four major releases, it now supports several SCA specifications (Assembly
Model, Transaction Policy, Java Common Annotations and APIs, Java Component Imple-
mentation, Spring Component Implementation, BPEL Client and Implementation, Web
Services Binding, JMS Binding), and provides a set of extensions to the standard, includ-
ing binding implementation types (Java RMI, SOAP, REST, JSON-RPC, JNA, UPnP, etc.),
component implementation types (Java, OSGi, Java supported scripting languages, Scala,
Fractal), interface description types (Java, C headers, WSDL, UPnP), runtime API for as-
sembly and component introspection/reconfiguration [Seinturier et al. 2009]. As its capa-
bilities grew, FraSCAti has also been refactored and completely architected itself with SCA
components.

With all these capabilities, the platform has become highly (re-)configurable in many
parts of its own architecture. It notably exposes a larger number of extensions that can be
activated throughout the platform, creating numerous variants of a FraSCAti deployment.
For example, some variations consist in one or more specific components bound to many
other mandatory or optional parts of the platform architecture. It then became obvious to
FraSCAti technical leads that the variability of the platform should be managed to pilot
and control its evolution as an SPL. Additionally, the benefits of factoring out variability
should allow FraSCAti to be "efficiently extended, changed, customized or configured for use in
a particular context" [Svahnberg et al. 2005].

12.1.2 Reverse Engineering FraSCAti as an SPL

In order to manage the FraSCAti platform as an SPL, we needed to capture its variability
from the existing architecture. We rely on feature models to describe the variability of
FraSCAti (see Figure 12.1 for an excerpt of an architectural feature model2 of the FraSCAti

2It must be noted that the feature model that we discuss all along this chapter are "architectural" in that they
focus on the variation points of the architecture.
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Figure 12.2: Variability Modeling from Software Artifacts

platform).
Several software artifacts (SCA composite files, Maven descriptors, informal docu-

ments) describe FraSCAti architecture, but variability, though, is not explicitly represented.
As the FraSCAti main software architect (SA), Philippe Merle, had an extensive expertise in
the architecture and in its evolution, it was decided to make him model the architecture
he has in mind with variation points (see left part of Figure 12.2). As a domain expert, he
had the ability to elicit the architectural variation points and explain rationale behind these
decisions. To follow separation of concerns principles, it was also decided to separate the
variability description from the architectural model itself. The principle is to model the
variation points of the architecture, to represent them as features in an architectural fea-
ture model, and finally to describe the links between the features and the architectural
elements. An important property is then to ensure consistency between feature model and
architectures [Lopez-Herrejon and Egyed 2010], even if not all variability elements can be
captured in a feature model.

This task resulted in a manually created feature model and it was clearly daunting,
time-consuming and error-prone, requiring substantial effort from the SA. In this case as
in all large scale architectures, it is very difficult to guarantee that the resulting feature
model ensures a safe composition of the architectural elements when some features are
selected. Another approach thus relies on an automated extraction, so that an architectural
feature model that represents variability of the architecture is automatically extracted from
the appropriate artifacts (see right part of Figure 12.2).This operation clearly saves time
and reduces accidental complexity, but the accuracy of the results directly depends on
the quality of the available documents and of the extraction procedure. This approach is
notably followed in recent reverse engineering that which is doing large scale variability
extraction from the Linux kernel [She et al. 2011].

The main challenge is then to reconcile these two architectural feature models into a
final feature model being compatible with both the SA view and the actual architecture. It
must also be noted that we could have tried to somehow integrate the SA knowledge in the
extraction process or to let him edit an extracted feature model, but we argue that keeping
the first two activities separated was better. It lets a highly experienced SA focus on its
own variability scoping, and compare it afterwards to the extracted version. Moreover,
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this allows for explicitly separating the required variability of the SA from the supported
variability of the actual software system, as advocated in [Metzger et al. 2007].

In the next section, we describe the automated extraction process that we have applied
to FraSCAti. We then show how the process is completed by refinement steps that enables
the architect to compare and integrate his/her knowledge, so that a consistent architectural
feature model is obtained (Section 12.3). This process is validated by experiments on the
FraSCAti architecture and some lessons learned are briefly discussed.

12.2 AUTOMATIC EXTRACTION OF ARCHITECTURAL FEATURE MODEL

Overview. Figure 12.3 summarizes the steps needed to realize the process. First, a raw
architectural feature model, noted FMArch150 , is extracted from a 150% architecture of the
system (see À). The latter consists of the composition of the architecture fragments of all
the system plugins. We call it a 150% architecture because it is not likely that the system
may contain them all. Consequently, FMArch150 does include all the features provided by
the system, but it still constitutes an over approximation of the set of valid combinations of
features of the system family. Indeed, some features may actually require or exclude other
features, which is not always detectable in the architecture, hence the need for considering
an additional source of information. We therefore also analyze the specification of the
system plugins and the dependencies declared between them, with the ultimate goal of
deriving inter-feature constraints from inter-plugin constraints. To this end, we extract a
plugin feature modelFMP lug, that represents the system plugins and their dependencies (see
Á). Then, we automatically reconstruct the bidirectional mapping that holds between the
features of FMP lug and those of FMArch150 (see Â). The result of the mapping is FMF ull.
Finally, we exploit this mapping as a basis to derive a richer architectural feature model,
noted FMArch, where additional feature constraints have been added. As compared to
FMArch150 , FMArch more accurately represents the architectural variability provided by
the system.

12.2.1 Extracting FMArch150

The architectural feature model extraction process starts from a set of n system plugins
(or modules), each defining an architecture fragment. In order to extract an architectural
feature model representing the entire product family, we need to consider all the system
plugins at the same time. We therefore produce a 150% architecture of the system, noted
Arch150. It consists of a hierarchy of components. In the SCA vocabulary, each component
may be a composite, itself further decomposed into other components. Each component
may provide a set of services, and may specify a set of references to other services. Services
and references having compatible interfaces may be bound together via wires. Each wire has
a reference as source and a service as target. Each reference r has a multiplicity, specifying
the minimal and maximal number of services that can be bound to r. A reference having a
0..1 or 0..N multiplicity is optional.

Note that Arch150 may not correspond to the architecture of a legal product in the sys-
tem family. For instance, several components may exclude each other because they all
define a service matching the same 0..1 reference r. In this case, the composition algorithm
binds only one service to r, while the other ones are left unbound in the architecture.
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Figure 12.3: Process for Extracting FMArch

Since the extracted architectural feature model should represent the variability of the
system of interest, we focus on its extension points, typically materialized by optional ref-
erences. Algorithm 1 summarizes the behavior of the feature model extractor. The root

Algorithm 1 ExtractArchitecturalFM150(Arch150)
Require: A 150% architecture of the plugin-based system (Arch150).
Ensure: A feature model approximating the system family (FMArch150 ).

1: root←MainComposite(Arch150)
2: froot ← CreateFeature(root)
3: FMArch150 ← SetRootFeature(FMArch150 , froot)
4: for all c ∈ FirstLevelComponents(root) do
5: fc ← CreateFeature(c)
6: FMArch150 ← AddMandatoryChildFeature(FMArch150 , froot, fc)
7: FMArch150 ← AddChildFeatures(FMArch150 , c, fc, Arch150)
8: end for

feature of the extracted feature model (froot) corresponds to the main composite (root) of
Arch150. The child features of froot are the first-level components of root, the latter being
considered as the main system features. The lower-level child features are produced by
theAddChildFeatures function (Algorithm 2). This recursive function looks for all the op-
tional references r of component c and, for each of them, creates an optional child feature
fr, itself further decomposed through a XOR or an OR group (depending on the multiplic-
ity of r). The child features fcs

of the group correspond to all components cs providing a
service compatible with r.
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Algorithm 2 AddChildFeatures(FM, c, fp, Arch150)
Require: A feature model (FM ), a component (c), a parent feature (fp), a 150% architec-

ture (Arch150).
Ensure: FM enriched with the child features of fp, if any.

1: for all r ∈ OptionalReferences(c) do
2: MC ← FindMatchingComponents(Arch150, r)
3: if MC 6= ∅ then
4: fr ← CreateFeature(r)
5: FM ← AddOptionalChildFeature(FM, fp, fr)
6: if Multiplicy(r) = 0..1 then
7: g ← CreateXORGroup()
8: else if Multiplicy(r) = 0..N then
9: g ← CreateORGroup()

10: end if
11: FM ← AddGroup(FM, fr, g)
12: for all cs ∈MC do
13: fcs ← CreateFeature(cs)
14: FM ← AddChildFeatureOfGroup(FM, g, fcs

)
15: FM ← AddChildFeatures(FM, cs, fcs

, Arch150)
16: end for
17: end if
18: end for

12.2.2 Extracting FMP lug

The extraction of the plugin feature model FMP lug starts from the set of plugins P =
{p1, p2, . . . , pn} composing the system. This extraction is straightforward: each plugin pi

becomes a feature fpi of FMP lug. If a plugin pi is part of the system core, fpi is a mandatory
feature, otherwise it is an optional feature. Each dependency of the form pi depends on pj

is translated as an inter-feature dependency fpi
requiresfpj

. Similarly, each pi excludes pj

constraint is rewritten as an excludes dependency between fpi
and fpj

.

12.2.3 Mapping FMArch150 and FMP lug

When producing Arch150, we keep track of the relationship between the input plugins
and the architectural elements they define, and vice versa. On this basis, we specify a
bidirectional mapping between the features of FMArch150 and those of FMP lug by means
of requires constraints. This mapping allows us to determine (1) which plugin provides a
given architectural feature, and (2) which architectural features are provided by a given
plugin.

12.2.4 Deriving FMArch

We now illustrate how we derive FMArch using FMArch150 , FMP lug, the mapping be-
tween FMP lug and FMArch150 , and the slice operation using the example of Figure 12.4.

First FMP lug and FMArch150 are aggregated under a synthetic root FtAggregation so
that root features of input feature models are mandatory child features of FtAggregation.
The aggregation operation corresponds to the one described in Chapter 5 and produces a
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Figure 12.4: Enforcing architectural FM using aggregation and slicing.

new feature model, called FMF ull (see Figure 12.4). The propositional constraints relating
features of FMP lug to features of FMArch150 are also added to FMF ull.

Second, we compute the slice of FMF ull onto the set of features of FMArch150 (i.e.,
FF MArch150

= {Arch, Ar1, . . . , Ar6}). We recall that the slice operation, given an input
feature model FMi and a set of features ft1, ft2, ..., ftn ⊆ FF Mi , produces a new feature
model, FMslice, such that: JFMsliceK = { x ∈ JFMiK | x ∩ {ft1, ft2, ..., ftn} }

In our case, the feature model produced by the slice operator is FMArch (see Fig-
ure 12.4). Formally:

ΠFF MArch150
(FMF ull) = FMArch

In the example of Figure 12.4, the relationship between JFMF ullK and JFMArchK is as
expected. We can notice that one configuration of the original FMArch150 has been re-
moved, i.e., JFMArch150K \ JFMArchK = {Ar1, Ar2, Ar3, Ar6, Arch}. Indeed the resulting
feature model FMArch contains an additional constraint Ar3⇒ Ar5, that was not present
in FMArch150 . Similarly, the constraint Ar4 ⇒ Ar6 (grey tint in Figure 12.4) can been de-
rived but is redundant with Ar3 ⇒ Ar5. As we will see below, such constraint derivation
can dramatically reduce the set of configurations of FMArch150 .

12.2.5 Practical Realization in FAMILIAR

Using FAMILIAR, we can realize the extraction process described in Figure 12.3. The follow-
ing FAMILIAR script has been developed to illustrate the example of Figure 12.4.

First, we perform the aggregation of FMArch150 and FMP lug together with constraints
(see lines 1-3). Then the slice is performed (line 5) and we obtain the enforced architectural
feature model FMArch. Finally, we can compare FMArch and FMArch150 (line 7) to deter-
mine whether some configurations have been removed. If it is the case, we can compute
the difference between the two set of configurations JFMArchK and JFMArch150K (lines 10-

15).

1 fmArch150 = FM ( Arch : Ar1 Ar2; Ar1: (Ar3|Ar4); Ar2 : (Ar5|Ar6); )
2 fmPlugin = FM ( Plugin : (Pl1|Pl2|Pl3)+ ; Pl1 -> Pl2 ; )
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3 fmFull = aggregate { fmArch150 fmPlugin } withMapping
4 constraints (Ar3 -> Pl1 ; Pl2 -> Ar5; )
5 fmArch = slice fmFull including fmArch150.* // enforced architectural FM
6

7 if (compare fmArch fmArch150 eq SPECIALIZATION) then
8 // we now compute the difference bewteen the set of configurations
9 //of fmArch150 and fmArch

10 // fmArch150Removal represents this difference
11 fmArch150Removal = merge diff { fmArch150 fmArch }
12 println "configurations removed from fmArch150="
13 smissing = configs fmArch150Removal
14 foreach (s in smissing) do
15 println s
16 end
17 else
18 // refactoring
19 println "configurations of fmArch150 have not been modified"
20 end

12.3 REFINING THE ARCHITECTURAL FEATURE MODEL: APPLICATION

We conduct a study to i) determine if the architectural feature model designed by the SA3,
noted FMSA, is consistent with the extracted feature model FMArch (and vice-versa) ; ii)
step-wise refine FMSA based on the previous observations. We describe the techniques
developed for the case study and analyze the results4.

12.3.1 Tool Support

We use FAMILIAR for two main purposes. Firstly, the extraction procedure generates FA-
MILIAR script to compute FMArch, similarly as the one illustrated above on a small scale.
Secondly, FAMILIAR provides the SA with a dedicated approach for easily manipulating
feature models during the refinement process.

12.3.2 Results

Automatic Extraction. In our case study, the FMArch150 produced by the extraction proce-
dure contains 50 features while the FMP lug contains 41 features. The aggregated feature
model, FMF ull, resulting from FMArch150 , FMP lug and the bidirectional mapping con-
tains 92 features and 158 cross-tree constraints. We first verify some properties of FMF ull.
By construction, we know that the slicing of FMF ull onto FF MArch150

is either a refactoring
or a specialization of FMArch150 .

We observe that FMArch is a specialization of FMArch150 . More precisely, FMArch150

admits 13.958.643.712 possible configurations (≈ 1011), whereas FMArch represents
936.576 distinct products (≈ 106). As expected, the slicing technique significantly reduces
the over approximation of FMArch150 .

3P. Merle, principal FraSCAti architect, plays the role of the SA in this study.
4See https://nyx.unice.fr/projects/familiar/wiki/ArchFm for further details about the case

study.

https://nyx.unice.fr/projects/familiar/wiki/ArchFm
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To improve the understanding of the difference between two feature models, we use
the merge diff operator described in Chapter 5 and denoted as FM1 ⊕\ FM2 = FMr.
We recall that a feature model f is a specialization or a refactoring of g if (f ⊕\ g) has no
valid configuration (see Lemma 1, page 82). Determining the kind of relationship (e.g.,
refactoring, specialization) between two feature models can thus be done by reusing the
algorithm presented in [Thüm et al. 2009] or by using the merge diff operator. Besides,
the diff operator can compute the difference (if any) between two feature models in terms
of set of configurations. In particular, we can compute the cardinality of this set. For
example, we correctly check the following relationship using the tool support: |FMArch150 |
-
∣∣FMArch150 ⊕\ FMArch

∣∣ = |FMArch| where |FMi| denotes the number of configurations
of FMi, i.e., |FMi| = |JFMiK|.

Refining Architectural feature models. The goal of the reverse engineering process is to
elaborate a feature model that accurately represents the valid combinations of features of
the SPL architecture. The absence of a ground truth feature model (i.e., a feature model
for which we are certain that each combination of features is supported by the SPL archi-
tecture) makes uncertain the accuracy of variability specification expressed in FMArch as
well as in FMSA. It is the role of the SA to determine if the variability choices in FMSA

(resp. FMArch) are coherent regarding FMArch (resp. FMSA). In case variability choices
are conflicting, the SA can refine5 the architectural feature model.

We now report the problems encountered when reasoning about the relationship be-
tween FMArch and FMSA. We also describe the advanced techniques to assist the SA.

Reconciling FMArch and FMSA. A first obstacle is related to the need of reconciling
FMArch and FMSA (see Figure 12.5). Both feature models come from difference sources
and a preliminary work is needed before reasoning about their relationship. Firstly,
the vocabulary (i.e., names of features) used differs in both feature models and should
be aligned consequently. To solve this issue, we rely on string matching techniques
(i.e., Levenshtein distance)6 to automatically identify features of FMArch that correspond
to features of FMSA. Then a renaming is applied on all corresponding features in
FMArch. As an example, "MMFraSCAti” of FMSA has been identified to correspond to
"sca_metamodel_frascati” of FMArch and after the renaming FMArch contains the feature
"MMFraSCAti”. We automatically detect 32 features. The SA manually specifies the map-
ping for 5 features in which the automated detection does not succeed (e.g., "Membrane-
Factory" corresponding to "fractal_bootstrap_class_providers"). Secondly, granularity de-
tails differ, (i.e., some features in one feature model are not present in the other feature
model): FMSA only contains 39 features whereas FMArch contains 50 features.

In FMSA but not in FMArch. Two exclusive features Felix and Equinox are present in
FMSA but not in FMArch. We also observed that the two features are present in FMP lug

but not in FMArch150 (and hence not in FMArch). A discussion with the SA reveals that
these two plugins do not explicitly define architecture fragments in SCA. As a conse-

5Here refine does not necessary mean specialize. It can be any edit of a feature model, for example, the removal
or addition of a feature or a constraint. Therefore the refinement process can produce a new feature model whose
set of configurations is not a subset of the original feature model.

6Note that FAMILIAR does not include built-in mechanisms to support this kind of operation (this is further
discussed in Chapter 14). This step can be seen as a pre-processing step realized by a third party tool.
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Figure 12.5: Process for Refining FMArch

quence, this variability point can simply not be identified in the architecture by the au-
tomatic extraction procedure.

In FMArch but not in FMSA. We identified 13 features that are present in FMArch but
not in FMSA. Among others, two metamodels used by the SCA parser, three Bindings,
two SCA properties, two Implementations and one Interface were missing. Given the
complexity of the FraSCAti project, this is not surprising that the SA has forgotten some
features. Hence, for most of the features, the SA considers the missing features as relevant
and thus adds them in FMSA. For one of the missing feature, "sca_interface_java", the SA
reveals that he intentionally ignored it in FMSA, arguing that it is a mandatory feature (i.e.,
every FraSCAti configuration has a Java interface) and that his focus was on variability
rather than commonality. We indeed verify the mandatory nature of "sca_interface_java"
in FMArch. Nevertheless, the SA decides to add "sca_interface_java" in FMSA. Simi-
larly, two first-level mandatory features, "binding_factory” and "services", were missing in
FMSA. The SA intentionally did not include the two features since they do not convey any
further variation points, but he decides to edit FMSA by adding those features. Another
example concerns a feature of FMArch, "juliac", that adds unnecessary details (so that the
way features are organized in FMSA and FMArch slightly differ). Here the SA decides to
remove "juliac" by projection.

Reasoning about FMArch and FMSA. At this step, we can compare FMArch and FMSA.
A first comparison is to determine the kind of relationship between FMArch and FMSA.
We obtain an arbitrary edit, that is, some configurations of FMArch are not valid in FMSA

(and vice-versa). To go further, we use the merge diff operator and the merge in inter-
section mode (see [Acher et al. 2010a]). We enumerate and count the unique configura-
tions of FMArch and FMSA as well as the common configurations of FMArch and FMSA.
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Nevertheless, the techniques appear to be insufficient to really understand the difference
between the two feature models. Intuitively, we need to identify more local differences. A
first technique is to syntactically compare the variability associated to features of FMArch

and FMSA that have the same name. In particular, we detect that i) four features are op-
tional in FMArch but mandatory in FMSA and ii) three sets of features belong to Or-groups
in FMArch whereas in FMSA, the features are all optional. A second technique is to com-
pute the intersection and the difference of the sets of requires constraints in FMArch and
FMSA based on their implication graphs (see page 65).

Step-wise Refinement of FMSA. The comparison techniques have been reiterated until
having a satisfactory architectural feature model. Based on the comparison results, the SA
had several attitudes. Firstly, he used FMArch to verify the coherence of his original vari-
ability specification in FMSA. Secondly, he considered that some variability decisions in
FMSA are correct despite their differences with FMArch. The SA imposed five variability
decisions not identified by the extraction procedure. Thirdly, he edits FMSA, for example,
by adding some constraints only present in FMArch or by setting optional a feature origi-
nally mandatory. The extracted feature model notably identifies nine "obvious" constraints
not expressed in FMSA and allows the SA to incrementally correct FMArch.

12.3.3 Lessons Learned

The FraSCAti case study provides us with interesting insights into the reverse engineering
of architectural feature models. First, the gap between FMSA and FMArch appears to be
manageable, due to an important similarity between the two feature models. However, it
remains helpful to assist the SA with automated support, in particular, to establish corre-
spondences between features of the two feature models. The most time-consuming task
was to reconcile the granularity levels of both feature models. For this specific activity, tool
supported, advanced techniques, such as the safe removal of a feature by projection, are
not desirable but mandatory, basic manual edits of feature models are not sufficient.

Second, our extraction procedure (Section 12.2) yields very promising results. It recov-
ers most of the variability expressed in FMSA and encourages the SA to correct his initial
model. A manual checking of the five variability decisions imposed by the SA shows that
the extraction is not faulty. It correctly reproduces the information as described in the
software artefacts of the project.

Third, the SA knowledge is also required i) to scope the SPL architecture (e.g., by re-
stricting the set of configurations of the extracted feature model), especially when software
artefacts do not correctly document the variability of the system and ii) to control the ac-
curacy of the automated procedure. An open issue is then to provide a mechanism and
a systematic process to reuse the SA knowledge, for example, for another version of the
architectural feature model of FraSCAti.

12.4 RELATED WORK

In their recent work, She et al. [She et al. 2011] proposed a reverse engineering approach
combining two distinct sources of information: textual feature descriptions and feature
dependencies. Our approach also benefits from the combination of two (other) sources of
information, namely plugin dependencies and architecture fragments. She et al. mostly
focus on the retrieval of the feature diagram (heuristics for identifying the most likely
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parent feature candidates of each feature, group detection, etc.) and assume that the set of
valid configurations is correctly restituted, which is clearly not the case in our work. We
also support the identification of feature groups (based on architectural extension points),
of the right parent feature of each feature (based on architectural hierarchy) and of inter-
feature dependencies (through projection of plugin dependencies).

Metzger et al. [Metzger et al. 2007] proposed an approach to cross-check product-line
variability and software variability models, thus assuming that such models (or views) are
available. Our approach is complementary since it allows to recover the actually supported
variability of a software system, and since it involves the cross-analysis of architectural and
plugin feature model. One of the key component and original contribution of our work is
the combined used of aggregate and slicing operators.

Thüm et al. [Thüm et al. 2009] reasoned on the nature of feature model edits, and pro-
vided a classification that we rely on when comparing the extracted feature model with
the software architect view. As we have shown, reasoning about the relationship of two
feature models is inappropriate until feature models are not reconciled, i.e., pre-directives
(e.g., safe removal of unnecessary details) have to be applied before. Moreover, the com-
parison operator developed in [Thüm et al. 2009] considers only the concrete features (i.e.,
leaves) but our experience shows that it is important to consider all features of the two
feature models (e.g., a non leaf feature can be concrete).

12.5 SUMMARY

In this chapter, we presented a tool-supported approach to reverse engineer software vari-
ability from an architectural perspective. The reverse engineering process involves the
automatically supported extraction, aggregation, slicing, alignment and comparison of
feature models. It has the merit of combining several sources of information, namely
software architecture, plugin dependencies and software architect knowledge. We suc-
cessfully evaluated the proposed approach when applied to FraSCAti, a large and highly
configurable plugin-based system. We showed that our automated procedures allow for
producing both correct and useful results, thereby significantly reducing manual effort.

We learned, however, that fully automating the process is not realistic nor desirable,
since the intervention of the software architect remains highly beneficial. The ongoing
evolution of the FraSCAti project will bring us an opportunity to study how to reuse the
accumulated knowledge of the software architect. As the validation was only conducted
on a single case study, we need, on the long term, to adapt the proposed process to show
its applicability to other forms of architecture (e.g., OSGi) and other architectural concepts.
This should make significant steps to the provision of a validated, systematic process for
extracting architectural feature models.
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Conclusion

Feature models are a fundamental formalism for specifying and reasoning about com-
monality and variability of software product lines (SPLs). Feature models are becoming
increasingly complex, handled by several stakeholders or organizations, used to describe
features at various levels of abstraction and related in a variety of ways. In different con-
texts and application domains, maintaining a single large feature model is neither feasible
nor desirable. Instead, multiple feature models are now used. In Part I of this document,
we discussed this increasing complexity in feature modeling and the need of managing
multiple feature models. We based our study on numerous examples in the literature as
well as on our own experience (scientific workflow design in the medical imaging domain,
variability modeling from requirements to runtime for the development of video surveil-
lance systems, reverse engineering architectural feature models of component and plugin
based system). In Chapter 4, we identified that a comprehensive support for separation of
concerns (SoC) as well as automated reasoning techniques are needed to manage feature
models on a large scale.

In this thesis, we developed theoretical foundations and practical support for managing
multiple feature models and we described their use in different application domains.

In Part II, we applied the principles of SoC to feature modeling. We designed and de-
veloped a set of composition and decomposition operators (aggregate, merge, slice) ded-
icated to the formalism of feature model. The merge operator produces more compact
feature models than existing techniques and thus eases the management, understanding
and analysis of sets of feature models. The slice operator allows SPL practitioners to find
semantically meaningful decompositions of a feature model. The implementation of the
two operators guarantees that the set of configurations and the hierarchy of the produced
feature model are consistent with the semantics we have defined for these operators. Fur-
thermore, we showed how these operators enable automated reasoning and form a consis-
tent and powerful support for SoC in feature modeling. Among others, we illustrated how
these operators can be applied to manage a catalog of legacy medical imaging services, to
update and extract feature model views, to reconcile feature models or to reason about two
kinds of variability.

In Part III, we introduced FAMILIAR (for FeAture Model scrIpt Language for manIpu-
lation and Automatic Reasoning), a textual and executable domain-specific language that
provides a practical support for managing multiple feature models. We gave an overview
of syntactic facilities as well as operators provided in FAMILIAR so that feature model users
can import, export, edit, configure, compose, decompose, configure and reason about fea-
ture models. FAMILIAR has been and is currently used in the different case studies described
in this thesis. We illustrated how a catalog of medical imaging services can be practically
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managed using reusable FAMILIAR scripts and the automated reasoning techniques pro-
vided in FAMILIAR. We described some details of the implementation (comprehensive en-
vironment, connection with other feature modeling frameworks, internal use of solvers)
and we evaluated the performance of two important operators (merge and slice) of the
language. The experiments showed that the order of complexity of publicly available fea-
ture models can be easily handled, but also that the current practical limits of the operators
open new perspectives, especially for managing very large feature models.

In Part IV, we showed how the operators and FAMILIAR have been applied in differ-
ent application domains. In the medical imaging domain, we proposed a comprehensive
modeling process and tooling support (including FAMILIAR and a set of domain specific
languages) for combining multiple variability artifacts with the purpose of assembling co-
herent scientific workflows. Separated feature models are used to describe the variability
of the different artifacts. At each step of the workflow design, automated reasoning tech-
niques assist medical imaging experts in selecting services from among sets of competing
services organized in a catalog while guaranteeing that the composition of services does
not violate important constraints. Our first experimental results showed that the over-
all approach offers an adequate user assistance and degree of automation for managing
the large number of features and feature models, thereby decreasing the effort and time
needed.

In another case study related to video surveillance systems, we proposed a modeling
process to model the variability from requirements to runtime. The process distinguishes
between domain variability and software variability and explicitly breaks these variability
spaces into two feature models. We developed the idea that in dynamic, self-adaptive soft-
ware systems (such as video surveillance systems) only a small part of the feature model
related to requirements has to be kept, for example, features related to the context. The
resulting specialized model can be efficiently used to pilot self-adaptation mechanisms.
Using automated techniques, FAMILIAR and its environment as tool support, we described
how the variability requirements can be expressed and then refined at design time so that
the set of valid software configurations to be considered at runtime can be highly reduced.
Furthermore, we showed that the proposed techniques are more scalable than existing
ones, up to the point that checking some important properties (e.g., realizability) would
not be possible without them. First experiments show that, following our approach, the
configuration spaces is reduced by an order of magnitude for different deployment sce-
narios of video surveillance systems.

The last application concerns the reverse engineering of the variability of FraSCAti, a
large and highly configurable component and plugin based system. In this context we
developed automated techniques to extract and combine different variability descriptions
of an architecture. Alignment and reasoning techniques have been applied to integrate the
architect knowledge and reinforced the extracted feature model. The reverse engineering
process has been made possible by the combined use of FAMILIAR operators – advanced
techniques, such as the safe removal of a feature by slicing, are required. Our experience
in the context of FraSCAti shows that the automated procedures produce both correct and
useful results, thereby significantly reducing manual effort.

Both the operators and the FAMILIAR language bring new capabilities to the feature
model users. Without these capabilities, some analysis and reasoning operations would
not be made possible in the different case studies. We also showed, throughout this doc-
ument, how existing approaches and scenarios for managing feature models can benefit
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from our techniques: We revisited and reimplemented some of them and we observed
better results in terms of scalability, reasoning capabilities, readability and evolution of
feature models, or SoC support.

The results of this research look promising to us. Though the operators, language
and its environment have been used in different application domains, by different peo-
ple, sometimes external to our team, a wide adoption is still missing. Important questions
arise and further research is needed. The performance and the adequacy of the operators
should be analyzed, i.e., is the set of operators comprehensive enough to meet the require-
ments of feature models users? Furthermore, the quality of the FAMILIAR environment
must be improved so that user experiments and qualitative assessments of the language
can be conducted qualitatively. We also need to investigate further the applicability of our
techniques (e.g., in other domains). The presented results also rely on the assumptions that
the manipulated feature models are propositional feature models, without any extensions.
Some extensions, such as feature attributes, are gaining importance in the SPL field and
should be considered. We hope this additional research effort will help us to gather more
validation elements.

Concerning our case studies:
• We need to reiterate the reverse engineering process on the ongoing evolution of

FraSCAti and show its applicability to other forms of architecture (e.g., OSGi) ;
• FAMILIAR should be fully integrated in a run time adaptation architecture so that an

end-to-end engineering of the video surveillance SPL can be made possible ;
• In the design of medical imaging workflows, a more comprehensive tool support,

including graphical facilities, is needed as well as the conduct of further experiments.
In this thesis, we have considered the problem of engineering SPLs from a feature

modeling perspective. We need to consider the problem from a more general perspec-
tive, including the different artifacts (e.g., source code, models) of an SPL. In particular,
an important research direction is to investigate, at the theoretical and practical level, the
relationship between multiple feature models and other artefacts (i.e., models) of an SPL.
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Perspectives

We now discuss various perspectives of this research. Firstly, we focus on research ques-
tions that arise from the current results and related to the operators, the language FAMILIAR
and the applicability of our techniques. This line of research will aim at consolidating our
work and gathering more validation elements. Secondly, although feature models and the
management of multiple feature models are important for SPL engineering, we need to
further investigate the relationship between feature models and other artifacts.

14.1 TOWARDS A COMPREHENSIVE SET OF OPERATORS

A large set of operators is provided in FAMILIAR. Nevertheless, we cannot guarantee that
the operators are comprehensive enough to meet the requirements of feature models users.
New techniques may be needed and emerge. We discuss here two kinds of techniques we
have identified to be relevant (from our experience in two case studies).

Alignment (or Reconciliation) of Feature Models. In an open, distributed environment,
suppliers can use different hierarchies, concepts, vocabulary, etc. when elaborating the
feature models. It may become an issue when merging feature models but also when com-
paring two feature models. In such circumstances, the need for feature model alignment (or
reconciliation) arose out of the need to integrate several feature models from different, in-
dependent sources. As previously mentioned, the alignment effort is not significant in the
case study related to the medical imaging domain since suppliers rely on a common ontol-
ogy [Temal et al. 2008] while feature models are views on such an ontology [Fagereng Jo-
hansen et al. 2010]. Moreover, a supplier may rely on an existing merged feature model and
then edit the feature model. In this case, a supplier reuses the same hierarchy, vocabulary,
etc. and alignment issues are avoided.

Nevertheless, the feature model alignment problem may occur more often in other ap-
plications or domains. To handle such situations, our techniques have to be extended,
beyond manually restructuring the hierarchy and renaming or removing features. The
techniques proposed in Chapter 7 are a first step. They consist in removing unnecessary
details present in one feature model but not in another. In Chapter 12, we have practically
applied these techniques to reconcile the feature model designed by the software architect
and the feature model produced by the extraction procedure – and we obtained promising
results. Nevertheless, we should apply these techniques on a larger scale and establish
whether they are sufficient.

In addition, we think the techniques can be more automated. In particular, an error-
prone and time-consuming task is to identify concepts (i.e., features) that are equivalent.
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Matching techniques can be reused in this context (e.g., see [Euzenat and Shvaiko 2007]).
Of course, the alignment process cannot be fully automated and the user intervention will
be necessary: Tools should support the interactive process.

Diff of Feature Models. Comparison capabilities can help an SPL practitioner to under-
stand and locate differences between two feature models. The need to compare and to
produce diffs of two feature models may happen when a feature model evolves over time
or when two feature models represent the same concept but with a different viewpoint. In
the context of the reverse engineering of FraSCAti, for instance, we needed to understand
and locate the differences between the feature model designed by the software architect
and the feature model produced by the extraction procedure.

Comparing two feature models is not a trivial task, since the number of legal configu-
rations in the two models can be very important. Currently, two techniques are available
in FAMILIAR: i) an operator that determines the kind of relationship (refactoring, general-
ization, specialization, arbitrary edit) between two feature models ; ii) a merge diff that
computes the difference of two sets of configurations. These techniques are, from our
experience with FraSCAti, not sufficient. First, they should be coupled with syntactic com-
parisons and we developed some FAMILIAR scripts to compare the variability operators
attached to features with the same name. Second, we developed techniques to compare
the differences between the set of implies/excludes constraints of both models based on
the implication/exclusion graph.

The process, though, may not be trivial in a larger scale (e.g., for larger feature models
than the one currently developed in the FraSCAti project) since the information gathered
may not be pertinent or too large to be understood by an SPL practitioner (e.g., a software
architect). It should be noted that comparing two feature models is inadequate until the
two feature models are not properly reconciled. Hence the diff and the alignment are two
related problems. Our research agenda is to investigate further in this research direction.
Generic techniques may emerge, soundly validated in different case studies (including
FraSCAti) and possibly integrated in the FAMILIAR language.

Scalability. As we have done with the merge and slice operators, the performance of
the diff and the alignment techniques should be evaluated. As mentioned at the end of
Chapter 9, we plan to investigate the use of SAT solvers in the context of the merge and
slice operators. Depending on the results, we may reuse it for the diff and the alignment
techniques. Increasing the scalability is interesting since we plan to apply the operators
and the techniques on a larger scale: i) feature models used in our different applications
are likely to increase in size and complexity ; ii) we observe that large feature models with
thousands of features are now automatically extracted from large implemented software
systems (see, e.g., [Lotufo et al. 2010, She et al. 2011]).

14.2 INCREASING THE ADOPTION OF THE LANGUAGE

Both engineering and research efforts are needed to increase the adoption of FAMILIAR by
SPL practitioners.

Enhancing FAMILIAR. We first need to increase the quality of the implementation and the
stability of the tooling. FAMILIAR is currently connected to FeatureIDE graphical editors.
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There are some interoperability issues since the formalism used in FeatureIDE does not
support more than one feature group by parent feature. Moreover we are unaware of any
tool with native support for the edition of multiple feature models. Such a tool should
come in complement to our composition and decomposition operators. Provided graph-
ical facilities are likely to ease the understanding of large feature models, their decompo-
sitions in smaller feature models, their configurations, their comparisons or their align-
ments. The need for an advanced graphical support comes from our case studies and we
expect to evaluate this new support in these different contexts.

Evaluation of the Language. The language can be evaluated from several perspectives.
Firstly, in terms of learnability, SPL practitioners have to learn an extra language, which
takes time and effort. The learning curve of FAMILIAR is expected to be favorable since a re-
stricted set of concepts is manipulated. Secondly, in terms of expressiveness, as FAMILIAR is
a DSL, the language is specific to that domain and limits the possible scenarios that can be
expressed. We need to assess when these limitations arise and whether they are problem-
atic. Thirdly, in terms of productivity, the operators are directly provided. This may lower
development costs and effort of FAMILIAR scripts. Fourthly, in terms of usability, tools and
methods supporting FAMILIAR should be easy and convenient to use. Finally, in terms of
reusability, modular mechanisms and parameterized scripts offer solutions that should be
assessed. For all criteria, we hope the graphical support may help to learn the language,
improve the productivity or usability. As a result, we plan to conduct experiments once the
tooling support (including the graphical support) and the language itself are considered
to be mature and stable enough. Initially, participants involved in the experiments will
be undergraduate and graduate students, researchers and some domain experts not nec-
essary familiar with feature models. We then hope to find industrial partners to conduct
experiments on a larger scale.

Integration of the Language. In the development of video surveillance systems, FAMILIAR
is used to model and specialize the variability of the software platform and the context.
Once the modeling process is completed, the variability at runtime should be used to pilot
self-adaptation mechanisms. In the run time adaptation architecture we present in [Moisan
et al. 2011], a run time component manager (RTCM) captures low level events manifesting
context changes (e.g., lighting changes); it forwards them to a FAMILIAR interpreter which
returns a new feature configuration; the RTCM is then responsible for applying this con-
figuration, that is to tune, add, remove, or replace components, and possibly to change the
workflow itself. We plan to generate, from a FAMILIAR script, the code needed to reason
about feature configurations. At the end, we expect to fully integrate our proposal in the
end-to-end engineering of the video surveillance systems.

In the medical imaging domain, our experience with the tool-supported approach re-
veals that an advanced user interface should be developed to facilitate the modeling of
variability and the configuration process. Indeed the Wfamily DSL (we recall that FAMIL-
IAR is embedded in Wfamily) suffers from a lack of integration with the workflow editor of
GWENDIA such that it is difficult for users to specify the weaving of feature models and
the mapping with the catalog. The development of new visualization techniques, for ex-
ample, to facilitate the connection understanding between different feature models of the
workflow is an interesting perspective to consider. It should be coupled with the graphical
support for multiple feature models currently developed.
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14.3 DEMONSTRATING THE APPLICABILITY

The results of this research are potentially applicable to different scenarios involving fea-
ture models. We now discuss some of these works.

Feature Models. Thompson and Heimdahl argue that a product family is multi-
dimensional if a hierarchical decomposition is not sufficient to capture its structure. In
other terms, it needs to be specified from n perspectives: one family-hierarchy per view
such as software or hardware [Thompson and Heimdahl 2003]. It is a form of separation of
concerns. A set-theoretic foundation is proposed and can be expressed using feature mod-
els. In this case, the different views correspond to different feature models. [Höfner et al.
2011] describe an algebra of product families and revisit the approach given in [Thompson
and Heimdahl 2003]. The proposed algebra enables algebraic manipulations of families of
specifications (expressed as a feature model). They notably propose techniques to resolve
conflicts among views, i.e., when features in one view description are linked to other fea-
tures of another view description. We think our operators can be applied in this context:
the aggregate operator can be used to link the different views while the slicing operator
can be used to resolve conflicts.

More generally, existing works briefly discussed in Chapter 4 can be revisited. We
already produced this effort for the work presented in [Metzger et al. 2007] (see Chapter 7),
in [Hartmann et al. 2009] (see Chapter 6) and in [Thüm et al. 2009] (see Chapter 7). Though
some of these works differ from ours (e.g., regarding the formalism used), we think the
approach and/or the scenarios presented in [Kang et al. 1998], [Czarnecki et al. 2005b],
[Tun et al. 2009], [Hartmann and Trew 2008], [Reiser and Weber 2007], [Lee and Kang
2010], [Zaid et al. 2011] can benefit from our techniques and support. We do not have
evidence of that yet and further research is needed.

Multiple SPL. In the thesis, we developed the concept of multiple SPL, i.e., an SPL that
manages a set of constituent SPLs. For example, in the case study related to the medical
imaging domain, services can be seen as SPLs provided by different researchers or scien-
tific teams. The entire workflow is then a multiple SPL in which different SPLs are com-
posed. Applying the same approach to another domain is possible and many automatic
parts of the process can be reused.

Let us consider that the other domain would manipulate connected components, pos-
sibly hierarchically composed so that one would face different software artifacts with a
different composition techniques. This case is comparable to the variable components pro-
posed in [van der Storm 2004]. The process would then remain similar to the one we
propose. The variability would have to be extracted from components and expressed as
feature models, then organized in a new catalog, reusing the FAMILIAR script. A new DSL
for weaving concerns on relevant point-cuts of components would have to be designed.
Interpretation for this DSL would need to be developed, so that either reusable FAMILIAR
scripts can be called or FAMILIAR code can be generated in order to provide automate prop-
agation and checking as in our workflow illustration. Consequently, the application of our
approach would only necessitate to focus on the definition and weaving of feature model
concerns, whereas the main difficulties of handling feature model composition would be
automated. Nevertheless, this needs to be done in future work.
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Feature-based Configurations. In the medical imaging domain, a lot of variability choices
are inferred to speed up the configuration process. In some cases, the user wants to know
why a certain feature was automatically selected or eliminated (i.e., he/she wants expla-
nations). Though some techniques exist (see, e.g., [Janota 2010]), it should be integrated
and adapted in our context since several feature models are potentially impacted. In the
context of feature-based configuration, several works proposed techniques to separate the
configuration process in different steps or stages [Czarnecki et al. 2005b, Hubaux et al.
2009, Mendonca and Cowan 2010]. In the context of staged configuration, White et al. pro-
pose a method to detect conflicts in a given configuration and propose changes in the con-
figuration in terms of features to be selected or deselected to remedy the problem [White
et al. 2008]. Again, such techniques should be considered in the context of our work where
multiple feature models are used.

14.4 BEYOND PROPOSITIONAL FEATURE MODELS

In this thesis, we relied on propositional (also called basic) feature models. Though the
strength of propositional feature models is their simplicity and intuitiveness, the expres-
sive power is rather limited in comparison with some extensions that have been proposed
(e.g., feature attributes, rich modeling constructs) [Czarnecki et al. 2006]. Therefore the
choice of a richer formalism can be justified in some domains, but it should be carefully
be studied given the expected performance and needed operations (e.g., increasing the ex-
pressive power means that reasoning techniques are more costly), i.e., there is a tradeoff
between performance and expressive power.

The possible use of feature attributes has been identified in our different case studies.
In the context of video surveillance applications, the formalism of propositional feature

models has been considered to be simple enough, yet expressive, to be used by video
surveillance experts and it can be given a formal semantics with useful outcomes. The
number of features is currently not a barrier to scalability, even at runtime. Numerical
constraints may be interesting (e.g., see [Acher et al. 2009a]). In the context of the reverse
engineering of architectural feature models, we plan to use feature attributes to model
quality attributes of the FraSCAti architecture [Acher et al. 2011a]. Finally, in the medical
imaging domain, there exists some services that support the same combination of features
(e.g., same format, same algorithm method) so that even at the end of the configuration
process, more than two services are still adequate. More information can be included to
describe and select services, including quality attributes attached to features in feature
models.

Though the use of feature attributes have been suggested early [Czarnecki et al. 2002]
or is now part of some languages [Classen et al. 2010a, Bąk et al. 2011], [Benavides et al.
2010] recognize that "extended feature models where numerical attributes are included,
miss further coverage" (benchmarks, comprehensive tool support, etc.).

Using extended feature models may lead to similar requirements to those identified
for propositional feature models. Therefore the ideas developed in the context of this the-
sis (use of multiple extended feature models, development of automated reasoning tech-
niques, support for separation of concerns) may be considered. For example, we can imag-
ine a similar modeling process for modeling variability of video surveillance systems with
the benefits of handling quantitative constraints. Nevertheless the semantics of extended
feature models should be taken into account, for example, what does it mean to merge or
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Figure 14.1: Relationships between Models and Feature Models

slice extended feature models?. It is also not clear whether a language should be designed
or whether FAMILIAR should be extended and in which proportions. We consider that the
domain of extended feature models is, in its current form, not mature enough. Further
research is needed both at the theoretical and practical level.

14.5 ON FEATURE MODELS AND OTHER MODELS

We defend an approach that puts feature models at the center of SPL engineering (see Fig-
ure 14.1). The overall problem lies in the relationship between feature models and other
models1 of an SPL. A first issue is related to the extraction of feature models to abstract the
variability of other models. A second issue concerns the realization of variability in other
models. Finally, we plan to investigate how feature models can participate in a composi-
tional approach involving a large number of inter-related models.

14.5.1 Extracting Feature Models From Other Models

In current practice, feature models are written in a top-down fashion through analysis
of domain artifacts such as documentation and existing applications. It is a manual task

1Here, model is used in a broad sense and can be textual requirements, UML diagrams, source code, etc.
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requiring expert analysis of multiple information sources. In particular, creating a fea-
ture model for an existing project is time-consuming and requires substantial effort from
a modeler. Therefore, automated extraction techniques would significantly help an SPL
practitioner by making the process less error-prone and more reproducible. The problem
of reverse engineering the variability of existing models has definitely not received suffi-
cient attention from the research community.

Several artifacts sources of informations and kinds of models are potentially candi-
date: system documentation [John 2006], textual requirements [Weston et al. 2009], on-
tology [Czarnecki et al. 2006, Fagereng Johansen et al. 2010], feature/plugin dependen-
cies [She et al. 2011, Acher et al. 2011a]. In addition, artifacts that may not be com-
monly considered as feature models can arguably be considered as feature models in dis-
guise [Czarnecki et al. 2006]. For example, products specification stored in tabular data
(e.g., using the CSV (comma-separated values) format) are good candidate. Even though
they have no explicit representation of variability or hierarchy, an expert can obtained fea-
ture models (we have performed preliminary experiments, see [Vanbeneden 2011]). The
idea of extracting a feature model from models faces several challenges:

• automation of the extraction: the user effort, the time needed and the error-proneness
should be reduced when building a feature model ;

• putting the user in the extraction process: though the procedure might be fully auto-
mated, the user should be able to play a part in the extraction (knowledge, scoping,
etc.) ;

• quality of the extracted feature models: the extracted feature model should accu-
rately represent the valid combination of features supported by artifacts of the SPL.
A coherent hierarchy is also expected ;

• scalability of the extraction: the extraction should scale up for a large set of data.
Theoretical or practical limits, if any, should be identified.

In this context, the new trend that consists in combining multiple information sources
(including the expert knowledge, as we have done within the FraSCAti project) should be
investigated further and in a larger context.

An orthogonal research question is to determine whether the concepts of feature mod-
eling are sufficient in their current state so that the semantic gap with other, potentially
richer, formalisms remains manageable. For example, we investigated the gap between
propositional feature models and OWL-based ontologies [Fagereng Johansen et al. 2010].
Our original motivation was to reuse the domain knowledge provided by the ontologies
developed in the context of Neurolog (a research project that aims at integrating data and
knowledge in medical imaging). We primarily investigated how to reason about the con-
sistency of a feature model in regards to an existing ontology.

This work, as well as other challenges identified, needs further research.

14.5.2 From Feature Models to Models

Although a feature model represents commonalities and variabilities in a very concise hi-
erarchical form, features in a feature model are merely "names" [Czarnecki and Antkiewicz
2005, Classen et al. 2008]. By extension, the description of software products at the feature
model level is restricted to a combination of syntactical symbols. In order to give semantics
to features, we need to explicitly connect features to base models (such as behavioral, data
specifications, UML models or even code representations). The overall challenge is to in-
tegrate feature models into a model-driven engineering (MDE) approach and to use them
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to automatically generate (a set of) models corresponding to particular products from the
SPL.

This is an important problem for several reasons. First and foremost, giving features
semantics by linking them to base models is a crucial means to detect errors in the feature
model and the base models. In this context, the main challenge is to assure safe compo-
sition [Czarnecki and Pietroszek 2006, Thaker et al. 2007, Classen et al. 2010b; 2011], that
is, to make sure that every configuration allowed by the feature model leads to a correct
model. Correctness can be defined in several ways, e.g., type safety in code [Thaker et al.
2007], structural validity in models [Czarnecki and Pietroszek 2006], satisfaction of speci-
fications [Classen et al. 2010b; 2011] and so on. Whenever the safe composition property
is guaranteed, we should be able to automatically derive a consistent and comprehensive
model from all valid configurations of a feature model.

In this context, two research directions have been identified: the realization of variabil-
ity at the model level and the need to develop compositional approaches for model-based
SPL.

Variability in Base Models: Annotative vs. Compositional Approaches. In the literature,
there are two very different approaches that have been proposed to implement variability
in SPLs, both at the code or the model level: annotative and compositional approaches. In
addition, several languages and tools have been developed to support the two approaches
(e.g., CIDE and FeatureHouse [Kästner 2010], FeatureMapper [Heidenreich et al. 2008],
CVL [Svendsen et al. 2010] or SmartAdapters [Perrouin et al. 2010]). Currently, the research
effort in the SPL community has mainly focused on developing, comparing and even in-
tegrating annotative and compositional approaches at the code level (see, e.g., [Kästner
2010]). Though these techniques can certainly be reused or adapted at the model level,
there is a need to better understand both approaches within the context of model-driven
SPL engineering. Two main research questions can be formulated:

RQ1 What are the current strengths and limitations of compositional and annotative approaches?
In particular, the approaches should be evaluated in terms of modularity, traceabil-
ity, language integration, safe composition, granularity, feature interaction manage-
ment, adoption, etc. Questions like "do annotative or compositional approaches offer
adequate variability notation in base models?", "are the current automations and rea-
soning operations appropriate and sufficient?" will have to be covered.

RQ2 What are the modeling techniques needed to improve both compositional and annotative ap-
proaches? Based on the results obtained in RQ1, we need to investigate means to
improve and extend existing approaches. Preliminary investigations show that (1)
most existing work does not cover semantic issues and focus too much on syntactic
properties (e.g., by only verifying syntactical correctness of a model product) ; (2)
there is a lack of formalization so that semantic analyses can be hardly defined and
automated ; (3) some challenges remain (e.g., Saval et al. identify three challenges in
compositional approaches [Saval et al. 2009]).

In particular, the integration of feature models with other kinds of models involves
formalizing the links between those notations, i.e., providing integrated formal syntax and
semantics. Based on a formal semantics, syntactic and semantic analyzes of model-based
SPLs can be properly defined and then automated. In addition the complexity of its as-
sociated decision procedures can be evaluated. In this context, the role of languages such
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as Clafer [Bąk et al. 2011], TVL [Classen et al. 2010a, Michel et al. 2011] or CVL [Svendsen
et al. 2010] should be carefully studied.

The Shift to Compositional Approaches. Some SPL engineering approaches now sup-
port defining and managing variability across different SPLs [Pohl et al. 2005, Buhne et al.
2005, Reiser and Weber 2007]. This “shift from variation to composition” and support for
managing multiple SPLs (a.k.a. product populations [van Ommering and Bosch 2002] or
software ecosystems [Bosch 2009]) are increasingly needed. Bosch proposes a paradigm
shift from the traditional, integration-oriented approach of SPLs and suggest that SPLs
are now multiple and compositional [Bosch 2010]. This is motivated by several reasons:
intra-organizational and management issues (e.g., teams can be external, teams can be
more independent and smaller), development of open ecosystems in which components
are provided by third parties (including open source software) and in which customers
can compose their own products, etc.

In this thesis, we have considered the problem of composing and managing multiple
SPLs from a feature modeling perspective. This is a first step but we need to consider
the problem from a more general perspective, including the different artifacts (e.g., source
code, models) of SPLs. Compositional SPL approaches have a role to play. In particular,
common mainstream modelling techniques advocate the use of different yet related mod-
els to represent the different stakeholders’ needs - a practice known as Aspect-Oriented
Modeling (AOM) or Multi-View Modeling (MVM). UML is an example of MVM where
the different types of diagrams can represent distinct views of the same system.

Our vision is that a large number of models together with their feature models has to
be used when describing a large, complex SPL. These models may be expressed in dif-
ferent formalisms, designed by different teams or stakeholders and used at different level
of abstractions. Leveraging their use in compositional SPL approaches does pose a major
challenge: how to extend them for handling consistency in and amongst the encapsulated
multi-view variable parts while considering their composition. This both involves manag-
ing multiple feature models as we have proposed in thesis, investigating the relationship
between feature models and models as described above, while managing multiple models
as proposed by MDE, AOM or MVM approaches.





Appendices





.1. MERGE OPERATOR: WHY IS IT IMPORTANT TO NEGATE FEATURES? 209

.1 MERGE OPERATOR: WHY IS IT IMPORTANT TO NEGATE FEATURES?

Let us consider the merging of FM1 and FM2 (see Figure .2) in strict union mode. The
resulting merged feature model, FMr, is also depicted in Figure .2. The following relation
truly holds:

JFM1K ∪ JFM2K = JFMrK

And-Group

Optional

Mandatory

Xor-Group

Or-Group

FMr

AnalyzeDICOM

Medical Image

Format

Nifti

AnalyzeDICOM

Medical Image

Format

FM1

NiftiDICOM

Medical Image

Format

FM2

Figure .2: Merging of feature models: a simple example

Let φ1 the propositional formula of FM1.
Let φ2 the propositional formula of FM2.
Let φr the propositional formula of FMr.

φ1 = MedicalImage ∧MedicaImage⇔ Format

∧Analyze⇒ Format ∧DICOM ⇒ Format

∧ Format⇒ (DICOM ∨Analyze) ∧ (¬DICOM ∨ ¬Analyze)
φ2 = MedicalImage ∧MedicaImage⇔ Format

∧Nifti⇒ Format ∧DICOM ⇒ Format

∧ Format⇒ (DICOM ∨Nifti) ∧ (¬DICOM ∨ ¬Nifti)

An intuitive but incorrect encoding of φr is

φr = φ1 ∨ φ2

Indeed, MedicalImage = true, Format = true, Nifti = true, Analyze =
true and DICOM = false is an assignment that satisfies φr. Unfortunately
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{MedicalImage, Format,Nifti, Analyze} corresponds to no valid configuration of
neither FM1 nor FM2. Similarly, {MedicalImage, Format,DICOM,Analyze} and
{MedicalImage, Format,DICOM,Nifti} correspond to no valid configuration of FM1
or FM2 (but are satisfying models of φr).

As we have previously defined, a correct encoding of φr is as follows:

φr = (φ1 ∧ ¬Nifti) ∨ (φ2 ∧ ¬Analyze)

Intuitively, we need to emulate the deselection of features that are in FM1 (resp.
FM2) but not in FM2 (resp. FM1). In particular the assignment MedicalImage = true,
Format = true, Nifti = true, Analyze = true and DICOM = false is no longer a
satisfying model of φr (it is the same for the two other counter examples given above).

.2 EXISTENTIAL QUANTIFICATION: AN EXAMPLE

Let
φ = (f1 ∨ ¬f3) ∧ (f1 ∨ f2) ∧ (f2 ∨ ¬f4 ∨ f3) ∧ (¬f1 ∨ f4 ∨ ¬f3)

The set of valid models of φ is enumerated below:

{{f1, f2}, {f1, f3, f4}, {f1, f3, f2, f4}, {f1, f2, f4}, {f2, f4}, {f1}, {f2}}

φex = ∃f1, f2 φ
= ∃f2 (φ ∧ (f1 = 0)) ∨ (φ ∧ (f1 = 1))
= (φ ∧ (f1 = 0) ∧ (f2 = 0)) ∨ (φ ∧ (f1 = 0) ∧ (f2 = 1)) ∨ (φ ∧ (f1 = 1) ∧ (f2 = 0)) ∨ (φ ∧ (f1 = 1) ∧ (f2 = 1))
= (φ ∧ (f1 = 0) ∧ (f2 = 1)) ∨ (φ ∧ (f1 = 1) ∧ (f2 = 0)) ∨ (φ ∧ (f1 = 1) ∧ (f2 = 1))
= (¬f3 ∧ (f4 ∨ ¬f3)) ∨ (φ ∧ (f1 = 1) ∧ (f2 = 0)) ∨ (φ ∧ (f1 = 1) ∧ (f2 = 1))
= (¬f3 ∧ (f4 ∨ ¬f3)) ∨ ((¬f4 ∨ f3) ∧ (f4 ∨ ¬f3)) ∨ (φ ∧ (f1 = 1) ∧ (f2 = 1))
= (¬f3 ∧ (f4 ∨ ¬f3)) ∨ ((¬f4 ∨ f3) ∧ (f4 ∨ ¬f3)) ∨ (f4 ∨ ¬f3)

The set of valid models of φex is enumerated below:

{{f4, f3}, {f4}, {}}

.3 ALGORITHMS FOR THE ASSEMBLY OF COHERENT WORKFLOWS
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Algorithm 3 Querying the catalog
Require: the set of services, FServices, of the workflow that are mapped to a catalog
Ensure: services requirements match at least one service in the catalog and are updated.

for all FServicei ∈ FServices do
Γi ← build the aggregated FM of FServicei

FMmapped ← the associated FM in the catalog
if JΓiK ∩ JFMmappedK = ∅ then

print “Unable to find a corresponding service in the catalog”
else
FMmerged ← Γi ⊕∩ FMmapped

fmsdecomposed ← decompose FMmerged

for all FMvc ∈ fmsdecomposed do
update FServicei with FMvc

end for
Φnew ← extract intra-constraints from fmsdecomposed

Φi ← Φnew {update intra-constraints}
end if

end for
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Algorithm 4 Updating FMs after compatibility checking
Require: a set of dataport connections, connectiondps, where a dataport connection is rep-

resented as a set of dataports. connectiondps is typically obtained through workflow
analysis.
for all connection ∈ connectiondps do
fmsToMerge← {}
for all dp ∈ connection do

if dp has no FM attached then
print “Warning: unable to find an FM in dataport”

else
fmDP ← retrieve the FM attached to dp
fmsToMerge← fmsToMerge ∪ fmDP

end if
end for
mergedFM ← fms1 ⊕∩ fms2 ⊕∩ . . . fmsn where fms1, fms2, . . . , fmsn ∈
fmsToMerge
if mergedFM not valid then

print “Error: dataports of connection are not compatible” {diff operations can be
performed to provide fine-grained explanations}

else
servicesmodified ← {} {services that have been impacted}
for all dp ∈ connection do
fmdp ← retrieve the FM attached to dp
if mergedFM is a specialization of fmdp then
servicedp ← retrieve the service of dp
servicesmodified ← servicesmodified ∪ servicedp {propagation is needed}

end if
fmdp ← mergedFM

end for
end if

end for
propagating choices on servicesmodified
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Algorithm 5 Consistency checking and constraint propagation
Require: a set of services, FServices
Ensure: requirements variability are consistent and updated within each service

for all FServicei ∈ FServices do
Γi ← build the aggregated FM of FServicei

if JΓiK = ∅ then
print “The service FServicei is not consistent”

else
propagate choices in Γi

fmsdecomposed ← decompose Γi

for all FMvc ∈ fmsdecomposed do
FMcorr ← retrieve the original FM that corresponds to FMvc in FServicei

update FServicei with FMvc

if FMvc is attached to a dataport and FMvc is a specialization of FMcorr then
mark FMvc {compatibility checking should be reiterated}

end if
end for

end if
end for

Algorithm 6 Reiterating the reasoning process
Require: the set of services, FServices, of the workflow ; the set of dataport connections,
connectiondps, of the workflow
for all FServicei ∈ FServices do

for all vc ∈ V Ci do
if vc is marked then

print “Info: compatibility checking should be reiterated”
dpvc ← retrieve dataport of vc
connectiondpvc

← {conn ∈ connectiondps ∧ dpvc ∈ conn}
unmark vc
perform compatibility checking on connectiondpvc

end if
end for

end for
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