
 
Domain-Specific 

Languages 

Mathieu Acher 
Maître de Conférences 
mathieu.acher@irisa.fr 

 
 
 
 



Material 

  
  
 

http://mathieuacher.com/teaching/MDE/ 

2 



Plan 
•  Domain-Specific Languages (DSLs) 

– Languages and abstraction gap 
– Examples and rationale 
– DSLs vs General purpose languages, 

taxonomy 
•  External DSLs 

– Grammar and parsing 
– Xtext 

•  DSLs, DSMLs, and (meta-)modeling 

3 



Contract 
•  Better understanding/source of inspiration of 

software languages and DSLs 
– Revisit of history and existing languages 

 
•  Foundations and practice of Xtext 

– State-of-the-art language workbench (Most 
Innovative Eclipse Project in 2010, mature and  
used in a variety of industries) 

•  Models and Languages 
– Perhaps a more concrete way to see models, 

metamodels and MDE (IDM in french) 

4 





The (Hi)Story of Software 
Engineering / Computer Science 

6 

1937 



•  Infinite tape divided into Cells (0 or 1) 
•  Read-Write Head 
•  Transitition rules 

7 

Turing Machine  
 

Write a symbol 
or move to left (>>) or right 
(<<)  



Turing Machine  
~ kind of state machine 

8 



 Successor (add-one) function  
assuming that  number n as a block of n+1 copies of 

the symbol ‘1’ on the tape (here, n=3) 

9 



10 



11 



12 



13 



14 



15 



16 



17 



18 



19 



20 



21 



22 



23 



24 



25 



26 



27 



28 



29 



30 



Addition of n+m 

31 



The (Hi)Story of Software 
Engineering / Computer Science 

32 



33 

Software 
Languages 



Programming the Turing Machine 
Why aren’t we using tapes, states and 

transitions after all ? 
 

34 

Distributed systems 
 
Thousands of 
engineers/expertise 
 
Web dev. 
 
Large-scale systems 
 
Critical Systems 

Complex Systems 



Programming the Turing Machine 
Why aren’t we using tapes, states and 

transitions after all ? 
 

35 

You cannot be serious 



Programming the Turing Machine 
Why aren’t we using tapes, states 

and transitions after all ? 
 

36 

Software Languages 
 
Not fun. Over complicated. 
Hard to write and 
understand. No abstractions. 
Poor  language constructs. 
Tooling Support? 



37 

Languages 
Complex 
Systems 



What is a language? 

•  « A system of signs, symbols, gestures, or 
rules used in communicating » 

•  « The special vocabulary and usages of a 
scientific, professional, or other group » 

•  « A system of symbols and rules used for 
communication with or between 
computers. » 

38 



Architecture Architecture 



Cartography Cartography 



Biology Biology 



Electronics Electronics 



In Software Engineering 

« Languages are the primary 
way in which system developers 
communicate, design and 
implement software systems »  

43 



44 

General Purpose  
Languages 
Assembly ? 
COBOL ? LISP ? C ? C++ ?  
Java? PHP ? C# ? Ruby ? 

 



Limits of General Purpose Languages (1) 
•  Abstractions and notations used are not 

natural/suitable for the stakeholders  

45 



•  Not targeted to a particular kind of 
problem, but to any kinds of software 
problem. 

46 

Limits of General Purpose Languages (2) 



•  Targeted to a particular kind of problem, 
with dedicated notations (textual or 
graphical), support (editor, checkers, etc.) 

•  Promises: more « efficient » languages for 
resolving a set of specific problems in a 
domain 

47 

Domain Specific Languages  



•  Long history: used for almost as long as 
computing has been done.  

•  You’re using DSLs in a daily basis 

•  You’ve learnt many DSLs in your 
curriculum 

•  Examples to come!  48 

Domain Specific Languages (DSLs) 



HTML 

 
Domain: web (markup) 

49 



CSS 

 
Domain: web (styling) 

50 



SQL 

 
Domain: database (query) 

51 



Makefile 

 
Domain: software building 

52 



Lighthttpd configuration 
file 

 
Domain: web server (configuration) 

53 



Graphviz 

 
Domain: graph (drawing) 

54 



PGN (Portable Game 
Notation) 

 
Domain: chess (games) 

55 



Regular expression 

 
Domain: strings (pattern matching) 

56 



 
Domain: model management 

57 

self.questions-­‐>size	
  	
  
self.employer-­‐>size	
  
self.employee-­‐>select	
  (v	
  |	
  v.wages>10000	
  )-­‐>size	
  
Student.allInstances	
  
	
  	
  -­‐>forAll(	
  p1,	
  p2	
  |	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  p1	
  <>	
  p2	
  implies	
  p1.name	
  <>	
  p2.name	
  )	
  

OCL 



UML can be seen as a collection 
of domain-specific modeling 

languages 

58 

 Behavioral 
Structural 



Problem 
Space Solution 

Space 

Assembler 

C, Java 

DSLs 

Abstraction 
Gap 



« Another lesson we should have learned from the recent past is 
that the development of 'richer' or 'more powerful' programming 
languages was a mistake in the sense that these baroque 
monstrosities, these conglomerations of idiosyncrasies, are really 
unmanageable, both mechanically and mentally.  
 
 
I see a great future for very systematic and 
very modest programming languages » 
 
 
 

 
ACM Turing Lecture, « The Humble Programmer » 
Edsger W. Dijkstra 60 

aka Domain-
Specific 
Languages 

aka General-Purpose 
Languages 

1972 



61 

2011 
« Domain-specific 
languages are far more 
prevalent than 
anticipated » 



62 

2011 



What is a domain-specific 
language ? 

•  « Language specially designed to perform a 
task in a certain domain » 

•  « A formal processable language targeting at a 
specific viewpoint or aspect of a software 
system. Its semantics and notation is 
designed in order to support working with that 
viewpoint as good as possible » 

•  « A computer language that's targeted to a 
particular kind of problem, rather than a 
general purpose language that's aimed at any 
kind of software problem. » 

63 



A GPL provides notations that are used to describe a computation in a 
human-readable form that can be translated into a machine-readable 
representation. 
 
A GPL is a formal notation that can be used to describe problem 
solutions in a precise manner. 
 
A GPL is a notation that can be used to write programs. 
 
A GPL is a notation for expressing computation. 
 
A GPL is a standardized communication technique for expressing 
instructions to a computer. It is a set of syntactic and semantic rules 
used to define computer programs. 

GPL (General Purpose Language) 



What is offered? 

Higher 
abstractions 

Avoid 
redundancy 

Separation 
of concerns 

Use domain 
concepts 

Promises of domain-specific languages 



Benefits 

Productivity 

Quality 

V&V 

Communication Domain 
Expert 

No 
Overhead 

Platform 
Independent 

Promises of domain-specific languages 



General PLs vs Domain-SLs 

The boundary isn’t as clear as it could be. Domain-
specificity is not black-and-white, but instead gradual: a 
language is more or less domain specific 
 

GeneralPL vs DomainSL 



External DSLs vs Internal DSLs 

•  An external DSL is a completely separate 
language and has its own custom syntax/
tooling support (e.g., editor)  

•  An internal DSL is more or less a set of 
APIs written on top of a host language 
(e.g., Java).  
– Fluent interfaces 

68 



External vs Internal DSL (SQL example) 

69 



Internal DSL (LINQ/C# example) 

70 



Internal DSL 
•  « Using a host language (e.g., Java) to give the 

host language the feel of a particular 
language. »  

•  Fluent Interfaces 
–  « The more the use of the API has that language like 

flow, the more fluent it is » 

71 



SQL in… Java 
DSL in GPL 

72 



Regular expression in… Java 
DSL in GPL 

73 



Internal DSLs vs External DSL 
•  Both internal and external DSLs have 

strengths and weaknesses  
–  learning curve,  
–  cost of building,  
–  programmer familiarity,  
–  communication with domain experts,  
– mixing in the host language,  
–  strong expressiveness boundary 

•  Focus of the course 
– external DSL a completely separate language 

with its own custom syntax and tooling support 
(e.g., editor) 

74 



Plan 
•  Domain-Specific Languages (DSLs) 

– Languages and abstraction gap 
– Examples and rationale 
– DSLs vs General purpose languages, 

taxonomy 
•  External DSLs 

– Grammar and parsing 
– Xtext 

•  DSLs, DSMLs, and (meta-)modeling 

75 



Contract 
•  Better understanding/source of inspiration of 

software languages and DSLs 
– Revisit of history and existing languages 

 
•  Foundations and practice of Xtext 

– State-of-the-art language workbench (Most 
Innovative Eclipse Project in 2010, mature and  
used in a variety of industries) 

•  Models and Languages 
– Perhaps a more concrete way to see models, 

metamodels and MDE (IDM in french) 

76 





Foundations (or some course 
refresh)  

78 

 
Grammar 

Source 
Code 

EBNF M3 

M2 

M1 

 
Java Grammar 

 
Java Program 



Compilation Process 
•  Source code 

– Concrete syntax used for specifying a 
program  

– Conformant to a grammar 
•  Lexical analysis 

– Conveting a sequence of characters into a 
sequence of tokens 

•  Parsing (Syntactical analysis) 
– Abtsract Syntax Tree (AST) 

79 



80 



81 



Compilation (en français) 

82 



DSL? The same! 

83 

 
Grammar 

Source 
Code 

EBNF M3 

M2 

M1 

 
DSL Grammar 

 
DSL specification/

program 



84 



85 

 
Grammar 

Source 
Code 

EBNF M3 

M2 

M1 

 
Metamodel 

Model 

Metametamodel 



Grammarware Modelware 

Grammar 

Model A Model C 

Model B 

Metamodel 

conforms To conforms To 

Source 
Code 

A 
Source 
Code 

B 

Source 
Code 

C 

Language and MDE 



87 

Give me a grammar,  
 
I’ll give you (for free) 
 * a comprehensive editor (auto-completion, syntax 
highlitening, etc.) in Eclipse 
 * an Ecore metamodel and facilities to load/serialize/visit  
conformant models (Java ecosystem) 
 * extension to override/extend « default » facilities (e.g., 
checker)  
 
 
 



88 



Xtext, Grammar, Metamodel 

 

 Grammar 

Source 
Code 

A 

conforms To 

Model A 

Metamodel 

conforms To 

Xtext, Grammar, Metamodel 



Xtext 

•  Eclipse Project 
– Part of Eclipse Modeling 
– Part of Open Architecture Ware 

•  Model-driven development of Textual DSLs 
•  Part of a family of languages 

– Xtext 
– Xtend 
– Xbase 
– Xpand 
– Xcore 

Xtext Project 



Eclipse Modeling Project 



The grammar language 

•  Corner-stone of Xtext 
•  A… DSL to define textual languages 

– Describe the concrete syntax 
– Specify the mapping between concrete syntax 

and domain model 
•  From the grammar, it is generated: 

– The domain model  
– The parser  
– The tooling 

The Grammar Language of Xtext 



•  Consistent look and feel 
•  Textual DSLs are a resource in Eclipse 
•  Open editors can be extended 
•  Complete framework to develop DSLs 
•  Easy to connect to any Java-based language 

Main Advantages 



Generate DSL tooling 

Configure generator 

Configure validation (opt) 

Configure Scoping (opt) 

Configure Fomatting (opt) 

Defining the DSL 
Grammar definition Workflow definition 

Create Xtext Project 

Development Process 



Example DSL 

•  Poll System application 
– Define a Poll with the corresponding questions 
– Each question has a text and a set of options 
– Each option has a text 

•  Generate the application in different 
platforms 

Poll System 
Definition Generator 

Motivating Scenario 



Generator 

Motivating Scenario (2) 



Grammar 
definition 

Grammar Definition 



Grammar Definition 
Grammar 

reuse 

Grammar Definition 



Derived 
metamodel 

Grammar Definition 



P
ar

se
r R

ul
es

 

Grammar Definition 



K
ey

w
or

ds
 

Grammar Definition 



Simple asignment 

Multivalue asignment 

?= Boolean asignment 

Grammar Definition 



Cardinality (others: * ?) 

Grammar Definition 



Containment 

Grammar Definition 



Grammar Definition 



Grammar Definition 



Grammar Definition 



Grammar Definition 















Chess Example - Grammar 
Game: 
 "White:" whitePlayer=STRING 
 "Black:" blackPlayer=STRING 
 (moves+=Move)+; 
 
Move: 
 AlgebraicMove | SpokenMove; 
AlgebraicMove: 
 (piece=Piece)? source=Square (captures?='x'|'-') dest=Square; 
 
SpokenMove: 
 piece=Piece 'at' source=Square 
 (captures?='captures' capturedPiece=Piece 'at' | 'moves to') 
 dest=Square; 
 
terminal Square: 
 ('a'..'h')('1'..'8'); 
 
enum Piece: 
 pawn   = 'P' | pawn = 'pawn' | 
 knight = 'N' | knight = 'knight' | 
 bishop = 'B' | bishop = 'bishop' | 
 rook   = 'R' | rook = 'rook' | 
 queen  = 'Q' | queen = 'queen' | 
 king   = 'K' | king = 'king'; 



Chess Example - Model 

White: "Mayfield" 
Black: "Trinks“ 
 
pawn at e2 moves to e4 
pawn at f7 moves to g5 
 
K b1 - c3 
f7 - f5 
 
queen at d1 moves to h5 
// 1-0 





From Metamodel to Grammar 

Grammar 

Source 
Code A 

conforms To 

Model A 

Metamodel 

conforms To 



119 

Give me a metamodel,  
 
I’ll give you (for free) 
 * a comprehensive editor (auto-completion, syntax 
highlitening, etc.) in Eclipse 
 * a grammar and facilities to load/serialize/visit  
conformant models (Java ecosystem) 
 * extension to override/extend « default » facilities (e.g., 
checker)  
 
 
 



120 

Give me a metamodel,  
 
The grammar can be « weird » (i.e., not as concise and 
as comprehensible than if you made it manually) 
 
[Same observation actually applies to the other side: 
generated metamodels (from grammar) can be weird as 
well, but you have at least some control in Xtext-based 
grammar] 
[We will experiment in the lab sessions] 
 
 
 







Graphical vs. Textual DSLs 
•  Success depends on how the notation fits the domain 

class	
  Person	
  {	
  
	
  	
  private	
  String	
  name;	
  
	
  	
  private	
  String	
  name;	
  
}	
  

Person	
  has	
  (name,	
  surname)	
  

Person 
name : string 
surname : string 

•  Graphical DSLs are not always easier to understand 

Graphical vs Textual DSLs 



A language can be  
graphical and textual 



Alternative representation 125 



Recommendations Recommendations for  
Graphical DSLs 



Recommendations 

Physics 
of 

notations 

Semiotic clarity 

Perceptual 
Discriminality 

Semantics 
transparency 

Complexity 
Management 

Cognitive 
Integration 

Visual 
Expressiveness 

Dual Coding 

Graphic 
Economy 

Cognitive Fit 

Recommendations for  
Graphical DSLs 



Recommendations 

Physics 
of 

notations 

Semiotic clarity 

Perceptual 
Discriminality 

Semantics 
transparency 

Complexity 
Management 

Cognitive 
Integration 

Visual 
Expressiveness 

Dual Coding 

Graphic 
Economy 

Cognitive Fit 

There should be a 1:1 correspondence 
between concepts and graphical symbols 

Recommendations for  
Graphical DSLs 



Recommendations 

Physics 
of 

notations 

Semiotic clarity 

Perceptual 
Discriminality 

Semantics 
transparency 

Complexity 
Management 

Cognitive 
Integration 

Visual 
Expressiveness 

Dual Coding 

Graphic 
Economy 

Cognitive Fit 

Recommendations for  
Graphical DSLs 



Recommendations 

Physics 
of 

notations 

Semiotic clarity 

Perceptual 
Discriminality 

Semantics 
transparency 

Complexity 
Management 

Cognitive 
Integration 

Visual 
Expressiveness 

Dual Coding 

Graphic 
Economy 

Cognitive Fit 
Different symbols should be 
clearly distinguishable from each 
other 

Recommendations for  
Graphical DSLs 



Recommendations 

Physics 
of 

notations 

Semiotic clarity 

Perceptual 
Discriminality 

Semantics 
transparency 

Complexity 
Management 

Cognitive 
Integration 

Visual 
Expressiveness 

Dual Coding 

Graphic 
Economy 

Cognitive Fit 

Recommendations for  
Graphical DSLs 



Physics 
of 

notations 

Semiotic clarity 

Perceptual 
Discriminality 

Semantics 
transparency 

Complexity 
Management 

Cognitive 
Integration 

Visual 
Expressiveness 

Dual Coding 

Graphic 
Economy 

Cognitive Fit 

Use visual representations 
whose apprarance suggests their 
meaning 

Recommendations for  
Graphical DSLs 



Recommendations 

Physics 
of 

notations 

Semiotic clarity 

Perceptual 
Discriminality 

Semantics 
transparency 

Complexity 
Management 

Cognitive 
Integration 

Visual 
Expressiveness 

Dual Coding 

Graphic 
Economy 

Cognitive Fit 

Include mechanisms for dealing 
with complexity 

Recommendations for  
Graphical DSLs 



Recommendations 

Physics 
of 

notations 

Semiotic clarity 

Perceptual 
Discriminality 

Semantics 
transparency 

Complexity 
Management 

Cognitive 
Integration 

Visual 
Expressiveness 

Dual Coding 

Graphic 
Economy 

Cognitive Fit 

Include explicit mechanisms to 
support integration of information 
from different diagrams 

Recommendations for  
Graphical DSLs 



Recommendations 

Physics 
of 

notations 

Semiotic clarity 

Perceptual 
Discriminality 

Semantics 
transparency 

Complexity 
Management 

Cognitive 
Integration 

Visual 
Expressiveness 

Dual Coding 

Graphic 
Economy 

Cognitive Fit 

Use the full range and capacities 
of visual variables 

Recommendations for  
Graphical DSLs 



Physics 
of 

notations 

Semiotic clarity 

Perceptual 
Discriminality 

Semantics 
transparency 

Complexity 
Management 

Cognitive 
Integration 

Visual 
Expressiveness 

Dual Coding 

Graphic 
Economy 

Cognitive Fit 

Recommendations for  
Graphical DSLs 



Recommendations 

Physics 
of 

notations 

Semiotic clarity 

Perceptual 
Discriminality 

Semantics 
transparency 

Complexity 
Management 

Cognitive 
Integration 

Visual 
Expressiveness 

Dual Coding 

Graphic 
Economy 

Cognitive Fit 

Recommendations for  
Graphical DSLs 



Recommendations 

Physics 
of 

notations 

Semiotic clarity 

Perceptual 
Discriminality 

Semantics 
transparency 

Complexity 
Management 

Cognitive 
Integration 

Visual 
Expressiveness 

Dual Coding 

Graphic 
Economy 

Cognitive Fit 

Recommendations for  
Graphical DSLs 



Recommendations 

Physics 
of 

notations 

Semiotic clarity 

Perceptual 
Discriminality 

Semantics 
transparency 

Complexity 
Management 

Cognitive 
Integration 

Visual 
Expressiveness 

Dual Coding 

Graphic 
Economy 

Cognitive Fit 

Use text to complement graphics 

Recommendations for  
Graphical DSLs 



Recommendations 

Physics 
of 

notations 

Semiotic clarity 

Perceptual 
Discriminality 

Semantics 
transparency 

Complexity 
Management 

Cognitive 
Integration 

Visual 
Expressiveness 

Dual Coding 

Graphic 
Economy 

Cognitive Fit 

Recommendations for  
Graphical DSLs 



Recommendations 

Physics 
of 

notations 

Semiotic clarity 

Perceptual 
Discriminality 

Semantics 
transparency 

Complexity 
Management 

Cognitive 
Integration 

Visual 
Expressiveness 

Dual Coding 

Graphic 
Economy 

Cognitive Fit 

The number of different graphical 
symbols should be cognitively 
manageable 

Recommendations for  
Graphical DSLs 



Recommendations 

Physics 
of 

notations 

Semiotic clarity 

Perceptual 
Discriminality 

Semantics 
transparency 

Complexity 
Management 

Cognitive 
Integration 

Visual 
Expressiveness 

Dual Coding 

Graphic 
Economy 

Cognitive Fit 

Use different visual dialects for 
different tasks and audiences 

Recommendations for  
Graphical DSLs 



•  Model-Driven Framework to develop graphical editors based 
on EMF and GEF 

•  GMF is part of Eclipse Modeling Project 
•  Provides a generative component to create the DSL tooling 
•  Provides a runtime infrastructure to facilitate the development 

of graphical DSLs 

Graphical Modeling Framework (GMF) 



GMF 

•  Eclipse project 
– Eclipse Modelling components 
– Uses 

•  EMF (Eclipse Modeling Framework) 
•  GEF (Graphical Editing Framework) 

•  Model-driven framework for Graphical DSLs 
– Everything is a model 

•  DSL definition easy, tweaking hard 

GMF 



Eclipse Modeling Project Eclipse Modeling Project 



Parts of GMF 

•  Tooling 
– Editors for notation, semantic and tooling 
– GMF Dashboard 
– Generator to produce the DSL implementation 

•  Runtime 
– Generated DSLs depend on the GMF Runtime 

to produce an extensible graphical editor 

GMF features 



Main advantages 

•  Consistent look and feel 
•  Diagram persistence 
•  Open editors can be extended by third-parties 
•  Already integrated with various Eclipse 

components 
•  Extensible notation metamodel to enable the 

isolation of notation from semantic concerns 
•  Future community enhancements will easily be 

integrated 

Main Advantages 



Generate Diagram Plugin 

Create Generator Model 

Develop Mapping Model 

Defining the DSL 
Domain Model Graphical Definition Tooling Definition 

Create GMF Project 

Development Process 



Proposed development process Development Process 



Example DSL Example (Graphical Notation) 



Domain Model 
•  Concepts 

– PollSystem 
– Poll 
– Question 
– Option 

•  Attributes 
– A Poll has a name 
– A Question has an identifier and a descriptive text 
– An Option has an identifier and a descriptive text 

•  Relationships 
– PollSystem is composed of polls and questions 
– Question has a set of options 

Poll System Metamodel 



Graphical Definition 
•  A model will represent a PollSystem 
•  A Poll will be a node 
•  A Question will be a rectangular node 
•  An Option will be a rectangular node included in the Question node 

Graphical Definition 



Plan 
•  Domain-Specific Languages (DSLs) 

– Languages and abstraction gap 
– Examples and rationale 
– DSLs vs General purpose languages, 

taxonomy 
•  External DSLs 

– Grammar and parsing 
– Xtext 

•  DSLs, DSMLs, and (meta-)modeling 

153 



Contract 
•  Better understanding/source of inspiration of 

software languages and DSLs 
– Revisit of history and existing languages 

 
•  Foundations and practice of Xtext 

– State-of-the-art language workbench (Most 
Innovative Eclipse Project in 2010, mature and  
used in a variety of industries) 

•  Models and Languages 
– Perhaps a more concrete way to see models, 

metamodels and MDE (IDM in french) 

154 





Abstraction Gap 

156 



Models/MDE 
•  In essence, a model is an abstraction of 

some aspect of a system under study.  
•  Some details are hidden or removed to 

simplify and focus attention.  
•  A model is an abstraction since general 

concepts can be formulated by abstracting 
common properties of instances or by 
extracting common features from specific 
examples 

•  (Domain-specific) Languages enable the 
specification or execution of models 

157 



Generative approach 

•  Programming the generation of programs 
•  Very old practice 
•  Metaprogramming: generative language and target 

language are the same 
–  Reflection capabilities 

•  Generalization of this idea: 
–  from a specification written in one or more textual 

or graphical domain-specific languages 
–  you generate customized variants  

158 



conforms To 

machineDefinition:	
  
	
  	
  MACHINE	
  OPEN_SEP	
  stateList	
  	
  
	
  	
  transitionList	
  CLOSE_SEP;	
  
	
  
stateList:	
  
	
  	
  state	
  (COMMA	
  state)*;	
  
	
  
state:	
  
	
  	
  ID_STATE;	
  
	
  
transitionList:	
  
	
  	
  transition	
  (COMMA	
  transition)*;	
  
	
  
transition:	
  
	
  	
  ID_TRANSITION	
  OPEN_SEP	
  	
  
	
  	
  state	
  state	
  CLOSE_SEP;	
  
	
  
MACHINE:	
  ‘machine’;	
  
OPEN_SEP:	
  ‘{’;	
  
CLOSE_SEP:	
  ‘{’;	
  
COMMA:	
  ‘,’;	
  
ID_STATE:	
  ‘S’	
  ID;	
  
ID_TRANSITION:	
  ‘T’	
  (0..9)+;	
  
ID:	
  (a..zA..Z_)	
  (a..zA..Z0..9)*; 

machine	
  {	
  
	
  	
  SOne	
  STwo	
  
	
  	
  T1	
  {	
  SOne	
  STwo	
  }	
  
} 

Grammar MetaModel 

Source Code/Model 

conforms To 



Model, Metamodel,  
Metametamodel, DSML 

160 



161 

 
Grammar 

Source 
Code 

EBNF M3 

M2 

M1 

 
Metamodel 

Model 

Metametamodel 



Language and MDE 

Grammarware Modelware 

Grammar 

Model A Model C 

Model B 

Metamodel 

conforms To conforms To 

Source 
Code 

A 
Source 
Code 

B 

Source 
Code 

C 

Language and MDE 



Grammar 

Source 
Code B 

conforms To 

Model A 

Metamodel 

conforms To 

MDE, Grammar: there and back 
again 



164 

2011 
« Domain-specific 
languages are far more 
prevalent than 
anticipated » 



What are models used for? 

“Do not use” percentages for MDE activities 



UML BPMN Vendor 
DSL 

In-house 
DSL 

SysML Matlab/ 
Simulink 

Which modeling languages do you use?  



Which diagrams are used? 

19 different diagram types are used regularly 



Use of multiple languages (DSLs) 

•  62% of those using custom DSLs also use 
UML 

•  Almost all users of SysML and BPMN also 
use UML 

•  UML is the most popular ‘single use’ 
language 
–  38% of all respondents 

•  UML used in combination with just about 
every combination of modeling languages 
–  14% of UML users combine with vendor DSL 
–  6% with both custom and vendor DSL 



UML can be seen as a collection of 
domain-specific modeling languages 

169 

 Behavioral 
Structural 



Xtext is built using MDE technologies 

170 

Xtext (and alternatives) democratize DSL 
development  







Worst practices 

•  Tradeoff cost/time of development versus 
producivity gained for solving problems 
–  If you use your DSL for resolving one problem, 

just one time, hum… 
– DSL: reusable, systematic means to resolve a 

specific task in a given domain 
•  DSL development can pay off quickly  

– 5’ you can get a DSL  
•  But DSL development can be time-

consuming and numerous worst practices 
exists   

When Developing DSLs? 



Actors Actors 



Actors 

Technical Level 

D
om

ai
n 

K
no

w
le

dg
e 

High 

High Low 

Low 

Actors 



Best practices 

Limit 
Expressiveness Viewpoints 

Evolution Learn from 
GPLs 

Support Tooling 

Best Practices 



Worst practices 

•  Initial conditions 
– Only Gurus allowed 

•  Believe that only gurus can build languages ir that 
“I’m smart and don’t need help” 

– Lack of Domain Understanding 
•  Insufficiently understanding the problem domain or 

the solution domain 
– Analysis paralysis 

•  Wanting the language to be theoretically complete, 
with its implementation assured 

Worst Practices 



Worst practices 

•  The source for Language Concepts 
– UML: New Wine in Old Wineskins 

•  Extending a large, general-purpose modeling language 

–  3GL Visual Programming 
•  Duplicanting the concepts and semantics of traditional 

programming languages 
– Code: The Library is the Language 

•  Focusing the language on the current code’s technical 
details 

– Tool: if you have a hammer 
•  Letting the tool’s technical limitations dictate language 

development 

Worst Practices 



Worst practices 

•  The resulting language 
– Too Generic / Too Specific 

•  Creating a language with a few generic concepts or 
too many specific concepts, or a language that can 
create only a few models 

– Misplaced Emphasis 
•  Too strongly emphasizing a particular domain 

feature 
– Sacred at Birth 

•  Viewing the initial language version as unalterable 

Worst Practices 



Worst practices 

•  Language Notation 
– Predetermined Paradigm 

•  Choosing the wrong representational paradigm or 
the basis of a blinkered view 

– Simplistic Symbols 
•  Using symbols that are too simple or similar or 

downright ugly 

Worst Practices 



Worst practices 

•  Language Use 
–  Ignoring the use process 

•  Failing to consider the language’s real-life usage 

– No training 
•  Assuming everyone understands the language like 

its creator 
– Pre-adoption Stagnation 

•  Letting the language stagnate after successful 
adoption 

Worst Practices 





http://martinfowler.com/bliki/
DomainSpecificLanguage.html 
 

183 


